We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dopaminergic imaging is an established biomarker for dementia with Lewy bodies, but its diagnostic accuracy at the mild cognitive impairment (MCI) stage remains uncertain.
Aims
To provide robust prospective evidence of the diagnostic accuracy of dopaminergic imaging at the MCI stage to either support or refute its inclusion as a biomarker for the diagnosis of MCI with Lewy bodies.
Method
We conducted a prospective diagnostic accuracy study of baseline dopaminergic imaging with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computerised tomography (123I-FP-CIT SPECT) in 144 patients with MCI. Images were rated as normal or abnormal by a panel of experts with access to striatal binding ratio results. Follow-up consensus diagnosis based on the presence of core features of Lewy body disease was used as the reference standard.
Results
At latest assessment (mean 2 years) 61 patients had probable MCI with Lewy bodies, 26 possible MCI with Lewy bodies and 57 MCI due to Alzheimer's disease. The sensitivity of baseline FP-CIT visual rating for probable MCI with Lewy bodies was 66% (95% CI 52–77%), specificity 88% (76–95%) and accuracy 76% (68–84%), with positive likelihood ratio 5.3.
Conclusions
It is over five times as likely for an abnormal scan to be found in probable MCI with Lewy bodies than MCI due to Alzheimer's disease. Dopaminergic imaging appears to be useful at the MCI stage in cases where Lewy body disease is suspected clinically.
The updated common rule, for human subjects research, requires that consents “begin with a ‘concise and focused’ presentation of the key information that will most likely help someone make a decision about whether to participate in a study” (Menikoff, Kaneshiro, Pritchard. The New England Journal of Medicine. 2017; 376(7): 613–615.). We utilized a community-engaged technology development approach to inform feature options within the REDCap software platform centered around collection and storage of electronic consent (eConsent) to address issues of transparency, clinical trial efficiency, and regulatory compliance for informed consent (Harris, et al. Journal of Biomedical Informatics 2009; 42(2): 377–381.). eConsent may also improve recruitment and retention in clinical research studies by addressing: (1) barriers for accessing rural populations by facilitating remote consent and (2) cultural and literacy barriers by including optional explanatory material (e.g., defining terms by hovering over them with the cursor) or the choice of displaying different videos/images based on participant’s race, ethnicity, or educational level (Phillippi, et al. Journal of Obstetric, Gynecologic, & Neonatal Nursing. 2018; 47(4): 529–534.).
Methods:
We developed and pilot tested our eConsent framework to provide a personalized consent experience whereby users are guided through a consent document that utilizes avatars, contextual glossary information supplements, and videos, to facilitate communication of information.
Results:
The eConsent framework includes a portfolio of eight features, reviewed by community stakeholders, and tested at two academic medical centers.
Conclusions:
Early adoption and utilization of this eConsent framework have demonstrated acceptability. Next steps will emphasize testing efficacy of features to improve participant engagement with the consent process.
The purpose of this update is to provide the most current information about both the Colorado Adoption Project (CAP) and the Longitudinal Twin Study (LTS) and to introduce the Colorado Adoption/Twin Study of Lifespan behavioral development and cognitive aging (CATSLife), a product of their merger and a unique study of lifespan behavioral development and cognitive aging. The primary objective of CATSLife is to assess the unique saliency of early childhood genetic and environmental factors to adult cognitive maintenance and change, as well as proximal influences and innovations that emerge across development. CATSLife is currently assessing up to 1600 individuals on the cusp of middle age, targeting those between 30 and 40 years of age. The ongoing CATSLife data collection is described as well as the longitudinal data available from the earlier CAP and LTS assessments. We illustrate CATSLife via current projects and publications, highlighting the measurement of genetic, biochemical, social, sociodemographic and environmental indices, including geospatial features, and their impact on cognitive maintenance in middle adulthood. CATSLife provides an unparalleled opportunity to assess prospectively the etiologies of cognitive change and test the saliency of early childhood versus proximal influences on the genesis of cognitive decline.
The Twins Early Development Study (TEDS) is a longitudinal twin study that recruited over 16,000 twin-pairs born between 1994 and 1996 in England and Wales through national birth records. More than 10,000 of these families are still engaged in the study. TEDS was and still is a representative sample of the population in England and Wales. Rich cognitive and emotional/behavioral data have been collected from the twins from infancy to emerging adulthood, with data collection at first contact and at ages 2, 3, 4, 7, 8, 9, 10, 12, 14, 16, 18 and 21, enabling longitudinal genetically sensitive analyses. Data have been collected from the twins themselves, from their parents and teachers, and from the UK National Pupil Database. Genotyped DNA data are available for 10,346 individuals (who are unrelated except for 3320 dizygotic co-twins). TEDS data have contributed to over 400 scientific papers involving more than 140 researchers in 50 research institutions. TEDS offers an outstanding resource for investigating cognitive and behavioral development across childhood and early adulthood and actively fosters scientific collaborations.
The Children of the Twins Early Development Study (CoTEDS) is a new prospective children-of-twins study in the UK, designed to investigate intergenerational associations across child developmental stages. CoTEDS will enable research on genetic and environmental factors that underpin parent–child associations, with a focus on mental health and cognitive-related traits. Through CoTEDS, we will have a new lens to examine the roles that parents play in influencing child development, as well as the genetic and environmental factors that shape parenting behavior and experiences. Recruitment is ongoing from the sample of approximately 20,000 contactable adult twins who have been enrolled in the Twins Early Development Study (TEDS) since infancy. TEDS twins are invited to register all offspring to CoTEDS at birth, with 554 children registered as of May 2019. By recruiting the second generation of TEDS participants, CoTEDS will include information on adult twins and their offspring from infancy. Parent questionnaire-based data collection is now underway for 1- and 2-year-old CoTEDS infants, with further waves of data collection planned. Current data collection includes the following primary constructs: child mental health, temperament, language and cognitive development; parent mental health and social relationships; parenting behaviors and feelings; and other socioecological factors. Measurement tools have been selected with reference to existing genetically informative cohort studies to ensure overlap in phenotypes measured at corresponding stages of development. This built-in study overlap is intended to enable replication and triangulation of future analyses across samples and research designs. Here, we summarize study protocols and measurement procedures and describe future plans.
We introduce exact methods for the simulation of sample paths of one-dimensional diffusions with a discontinuity in the drift function. Our procedures require the simulation of finite-dimensional candidate draws from probability laws related to those of Brownian motion and its local time, and are based on the principle of retrospective rejection sampling. A simple illustration is provided.
Understanding the distribution of gas in and around galaxies is vital for our interpretation of galaxy formation and evolution. As part of the Arecibo Galaxy Environment Survey (AGES) we have observed the neutral hydrogen (HI) gas in and around the nearby Local Group galaxy M33 to a greater depth than previous observations. As part of this project we investigated the absence of optically detected dwarf galaxies in its neighbourhood, which is contrary to predictions of galaxy formation models. We observed 22 discrete clouds, 11 of which were previously undetected and none of which have optically detected counterparts. We find one particularly interesting hydrogen cloud, which has many similar characteristics to hydrogen distributed in the disk of a galaxy. This cloud, if it is at the distance of M33, has a HI mass of around 107 M⊙ and a diameter of 18 kpc, making it larger in size than M33 itself.
Recent studies suggest that sand can serve as a vehicle for exposure of humans to pathogens at beach sites, resulting in increased health risks. Sampling for microorganisms in sand should therefore be considered for inclusion in regulatory programmes aimed at protecting recreational beach users from infectious disease. Here, we review the literature on pathogen levels in beach sand, and their potential for affecting human health. In an effort to provide specific recommendations for sand sampling programmes, we outline published guidelines for beach monitoring programmes, which are currently focused exclusively on measuring microbial levels in water. We also provide background on spatial distribution and temporal characteristics of microbes in sand, as these factors influence sampling programmes. First steps toward establishing a sand sampling programme include identifying appropriate beach sites and use of initial sanitary assessments to refine site selection. A tiered approach is recommended for monitoring. This approach would include the analysis of samples from many sites for faecal indicator organisms and other conventional analytes, while testing for specific pathogens and unconventional indicators is reserved for high-risk sites. Given the diversity of microbes found in sand, studies are urgently needed to identify the most significant aetiological agent of disease and to relate microbial measurements in sand to human health risk.
The kesterite semiconductor Cu2ZnSnS(e)4 is seen as a suitable absorber layer to replace Cu(In,Ga)Se2 in thin film solar cells, if thin film photovoltaics are to be deployed on the terawatt scale. Currently the best devices, and hence the best kesterite absorber layers are grown away from stoichiometry and are zinc rich and copper poor, presumably leading to the formation of ZnS(e). However, it has been shown that secondary phases present in an absorber layer reduce device performance. If growth in Zn rich conditions seems to be mandatory, then any secondary phases formed should be grown on the surface of the absorber layer so that they may be easily removed by etching. Therefore, it is important to know how and why secondary phases form, and if possible, how to segregate them to the surface of the absorber layer.
Here we show that ZnSe is formed at the initial stages of absorber formation from annealing metal stacks in selenium vapor. Further we demonstrate that the way the precursor metals are distributed on the substrate leads to different absorber layer performances in full devices. The importance of selenium vapor pressure is highlighted in respect to the order of selenisation of the metals, Zn before Cu. Additionally, the importance of selenium and tin selenide vapor pressure during annealing is reviewed with regard to avoiding a decomposition of the Cu2ZnSnSe4 to ZnSe and Cu2Se phases. Regardless of the atmosphere above the absorber, the reaction of the absorber with molybdenum appears unavoidable without the use of a passivation strategy. Counter-intuitively, it is demonstrated that for our absorber layers grown under Zn-rich conditions, removal of the ZnSe is harmful for device performance.
Child neglect is the most prevalent form of child maltreatment in the United States, and poses a serious public health concern. Children who survive such episodes go on to experience long-lasting psychological and behavioral problems, including higher rates of post-traumatic stress disorder symptoms, depression, alcohol and drug abuse, attention-deficit/hyperactivity disorder, and cognitive deficits. To date, most research into the causes of these life-long problems has focused on well-established targets such as stress responsive systems, including the hypothalamus–pituitary–adrenal axis. Using the maternal separation and early weaning model, we have attempted to provide comprehensive molecular profiling of a model of early-life neglect in an organism amenable to genomic manipulation: the mouse. In this article, we report new findings generated with this model using chromatin immunoprecipitation sequencing, diffuse tensor magnetic resonance imaging, and behavioral analyses. We also review the validity of the maternal separation and early weaning model, which reflects behavioral deficits observed in neglected humans including hyperactivity, anxiety, and attentional deficits. Finally, we summarize the molecular characterization of these animals, including RNA profiling and label-free proteomics, which highlight protein translation and myelination as novel pathways of interest.