We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The remnant phase of a radio galaxy begins when the jets launched from an active galactic nucleus are switched off. To study the fraction of radio galaxies in a remnant phase, we take advantage of a $8.31$ deg$^2$ subregion of the GAMA 23 field which comprises of surveys covering the frequency range 0.1–9 GHz. We present a sample of 104 radio galaxies compiled from observations conducted by the Murchison Widefield Array (216 MHz), the Australia Square Kilometer Array Pathfinder (887 MHz), and the Australia Telescope Compact Array (5.5 GHz). We adopt an ‘absent radio core’ criterion to identify 10 radio galaxies showing no evidence for an active nucleus. We classify these as new candidate remnant radio galaxies. Seven of these objects still display compact emitting regions within the lobes at 5.5 GHz; at this frequency the emission is short-lived, implying a recent jet switch off. On the other hand, only three show evidence of aged lobe plasma by the presence of an ultra-steep-spectrum ($\alpha<-1.2$) and a diffuse, low surface brightness radio morphology. The predominant fraction of young remnants is consistent with a rapid fading during the remnant phase. Within our sample of radio galaxies, our observations constrain the remnant fraction to $4\%\lesssim f_{\mathrm{rem}} \lesssim 10\%$; the lower limit comes from the limiting case in which all remnant candidates with hotspots are simply active radio galaxies with faint, undetected radio cores. Finally, we model the synchrotron spectrum arising from a hotspot to show they can persist for 5–10 Myr at 5.5 GHz after the jets switch of—radio emission arising from such hotspots can therefore be expected in an appreciable fraction of genuine remnants.
The Zero Suicide framework is a system-wide approach to prevent suicides in health services. It has been implemented worldwide but has a poor evidence-base of effectiveness.
Aims
To evaluate the effectiveness of the Zero Suicide framework, implemented in a clinical suicide prevention pathway (SPP) by a large public mental health service in Australia, in reducing repeated suicide attempts after an index attempt.
Method
A total of 604 persons with 737 suicide attempt presentations were identified between 1 July and 31 December 2017. Relative risk for a subsequent suicide attempt within various time periods was calculated using cross-sectional analysis. Subsequently, a 10-year suicide attempt history (2009–2018) for the cohort was used in time-to-recurrent-event analyses.
Results
Placement on the SPP reduced risk for a repeated suicide attempt within 7 days (RR = 0.29; 95% CI 0.11–0.75), 14 days (RR = 0.38; 95% CI 0.18–0.78), 30 days (RR = 0.55; 95% CI 0.33–0.94) and 90 days (RR = 0.62; 95% CI 0.41–0.95). Time-to-recurrent event analysis showed that SPP placement extended time to re-presentation (HR = 0.65; 95% CI 0.57–0.67). A diagnosis of personality disorder (HR = 2.70; 95% CI 2.03–3.58), previous suicide attempt (HR = 1.78; 95% CI 1.46–2.17) and Indigenous status (HR = 1.46; 95% CI 0.98–2.25) increased the hazard for re-presentation, whereas older age decreased it (HR = 0.92; 95% CI 0.86–0.98). The effect of the SPP was similar across all groups, reducing the risk of re-presentation to about 65% of that seen in those not placed on the SPP.
Conclusions
This paper demonstrates a reduction in repeated suicide attempts after an index attempt and a longer time to a subsequent attempt for those receiving multilevel care based on the Zero Suicide framework.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The low-frequency linearly polarised radio source population is largely unexplored. However, a renaissance in low-frequency polarimetry has been enabled by pathfinder and precursor instruments for the Square Kilometre Array. In this second paper from the POlarised GaLactic and Extragalactic All-Sky MWA Survey-the POlarised GLEAM Survey, or POGS-we present the results from our all-sky MWA Phase I Faraday Rotation Measure survey. Our survey covers nearly the entire Southern sky in the Declination range
$-82^\circ$
to
$+30^\circ$
at a resolution between around three and seven arcminutes (depending on Declination) using data in the frequency range 169−231 MHz. We have performed two targeted searches: the first covering 25 489 square degrees of sky, searching for extragalactic polarised sources; the second covering the entire sky South of Declination
$+30^\circ$
, searching for known pulsars. We detect a total of 517 sources with 200 MHz linearly polarised flux densities between 9.9 mJy and 1.7 Jy, of which 33 are known radio pulsars. All sources in our catalogues have Faraday rotation measures in the range
$-328.07$
to
$+279.62$
rad m−2. The Faraday rotation measures are broadly consistent with results from higher-frequency surveys, but with typically more than an order of magnitude improvement in the precision, highlighting the power of low-frequency polarisation surveys to accurately study Galactic and extragalactic magnetic fields. We discuss the properties of our extragalactic and known-pulsar source population, how the sky distribution relates to Galactic features, and identify a handful of new pulsar candidates among our nominally extragalactic source population.
To make a power spectrum (PS) detection of the 21-cm signal from the Epoch of Reionisation (EoR), one must avoid/subtract bright foreground sources. Sources such as Fornax A present a modelling challenge due to spatial structures spanning from arc seconds up to a degree. We compare modelling with multi-scale (MS) CLEAN components to ‘shapelets’, an alternative set of basis functions. We introduce a new image-based shapelet modelling package, SHAMFI. We also introduce a new CUDA simulation code (WODEN) to generate point source, Gaussian, and shapelet components into visibilities. We test performance by modelling a simulation of Fornax A, peeling the model from simulated visibilities, and producing a residual PS. We find the shapelet method consistently subtracts large-angular-scale emission well, even when the angular resolution of the data is changed. We find that when increasing the angular resolution of the data, the MS CLEAN model worsens at large angular scales. When testing on real Murchison Widefield Array data, the expected improvement is not seen in real data because of the other dominating systematics still present. Through further simulation, we find the expected differences to be lower than obtainable through current processing pipelines. We conclude shapelets are worthwhile for subtracting extended galaxies, and may prove essential for an EoR detection in the future, once other systematics have been addressed.
OBJECTIVES/GOALS: To develop feasible screening methods for activity of the enzyme Glucose-6-phosphate dehydrogenase (G6PD) with point of care applicability. METHODS/STUDY POPULATION: Current knowledge establishes the relevance of G6PD as a critical therapeutic determinant for effective antimalarial therapy due to the occurrence of mutations that lead to post-treatment severe adverse effects. We present our findings on development of cost effective point-of-care screening methodologies to ascertain G6PD deficiency. RESULTS/ANTICIPATED RESULTS: Using Patient Cohort Explorer and data from the Department of Pathology, we established the prevalence of G6PD deficiency at the University of Mississippi Medical Center, Jackson, MS as high as 11.8% (African-American males in all population, n = 2518). Next, for selection of potential target groups, we set up a protocol for recruitment of volunteers based on ethnic background, parental ethnicity, and medical history. G6PD activity was evaluated using point of care methods [Trinity Biotech test or CareSTART Biosensor], and Gold Standard quantitative spectrophotometric assay (LabCorp). Determinations in >20 subjects have showed comparable concordance. If used with a conservative interpretation of the signal, the Trinity Biotech test showed superior potential for use in the field relative to the CareSTART Biosensor. DISCUSSION/SIGNIFICANCE OF IMPACT: We established the prevalence of G6PD deficiency in our medical center. We have also setup tests for point-of-care assessment of G6PD. Pending evaluation of the relative tests performance, we will be in position to screen individuals and select them for a prospective clinical trial to evaluate the safety of antimalarial agents on scope of G6PD deficiency.
Craving in negative emotional situations (negative craving) is commonly associated with relapse and heavy alcohol use. Elevated dynorphin levels were associated with negative emotions, while variations in the OPRK1 and PDYN genes encoding OPRK1 receptor and dynorphins were associated with alcohol dependence.
Objectives
To investigate potential overlap in the genetic factors underlying, negative craving and alcohol dependence.
Aims
Examine the association of the negative craving and genetic variation in the OPRK1 and PDYN genes.
Methods
13 PDYN and 10 OPRK1 Single Nucleotide Polymorphisms (SNPs), including those previously reported to be associated with alcohol dependence were genotyped in 196 alcohol dependent subjects. The raw scores of the negative subscale of Inventory of Drug Taking Situations (IDTS) were utilized as a quantitative measure of negative craving. Logistic regression models were used to test for associations after controlling for age and gender.
Results
Gene-level haplotype testing demonstrated significant association of negative craving with variation in PDYN (p < 0.05) but not OPRK1 gene. The rs2281285 - rs199794 haplotype showed significant association (p = 0.0236) with negative craving, while rs2235749 - rs10485703 haplotype showed marginally significant association (p = 0.055). This replicates previous findings of association between these haplotypes and alcohol dependence. Negative craving was also associated with PDYN rs2281285 variant (p = 0.012) with estimated effect size of 6.95 (SE = 2.75). This new association finding was not significant after correction for multiple testing (p = 0.18).
Conclusions
Our findings support association of PDYN sequence variation with negative craving in alcohol dependent subjects. Future studies should investigate functional mechanisms of this association.
The interest in experiencing training abroad has grown and its benefits have been progressively recognized. For these reasons, several psychiatric trainees seek to extend their competencies, skills and knowledge through these exchange opportunities, such as the European Federation of Psychiatric Trainees (EFPT) Exchange Programme.
Objectives
With this work we intend to describe these international experiences of being acquainted with a different health system and psychiatry training programme.
Aims
Reflect on the impact of these experiences, considering on how these can be used to benefit the patient care provided across countries, further to the professional and personal individual benefits that colleagues gain.
Methods
Presenting the testimonials of junior doctors from abroad that have had the opportunity to observe and collaborate in the current system of the United Kingdom.
Results
The EFPT Exchange Programme is an excellent opportunity for psychiatry trainees to share experiences, knowledge and good practices. The cultural and social framework of psychiatry certainly has an impact on the approach to mental health problems, and being knowledgeable of these differences can provide benefits not only to the junior doctors who complete these exchanges abroad, but also to their colleagues working at their hosting institutions that become acquainted with different realities through their presence and feedback.
Conclusions
The benefits of these exchange mobility experiences are unequivocal. Therefore, it is fundamental to share these experiences and promote these opportunities.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
Observational studies have linked elevated homocysteine to vascular conditions. Folate intake has been associated with lower homocysteine concentration, although randomised controlled trials of folic acid supplementation to decrease the incidence of vascular conditions have been inconclusive. We investigated determinants of maternal homocysteine during pregnancy, particularly in a folic acid-fortified population.
Design:
Data were from the Ottawa and Kingston Birth Cohort of 8085 participants. We used multivariable regression analyses to identify factors associated with maternal homocysteine, adjusted for gestational age at bloodwork. Continuous factors were modelled using restricted cubic splines. A subgroup analysis examined the modifying effect of MTHFR 677C>T genotype on folate, in determining homocysteine concentration.
Setting:
Participants were recruited in Ottawa and Kingston, Canada, from 2002 to 2009.
Participants:
Women were recruited when presenting for prenatal care in the early second trimester.
Results:
In 7587 participants, factors significantly associated with higher homocysteine concentration were nulliparous, smoking and chronic hypertension, while factors significantly associated with lower homocysteine concentration were non-Caucasian race, history of a placenta-mediated complication and folic acid supplementation. Maternal age and BMI demonstrated U-shaped associations. Folic acid supplementation of >1 mg/d during pregnancy did not substantially increase folate concentration. In the subgroup analysis, MTHFR 677C>T modified the effect of folate status on homocysteine concentration.
Conclusions:
We identified determinants of maternal homocysteine relevant to the lowering of homocysteine in the post-folic acid fortification era, characterised by folate-replete populations. A focus on periconceptional folic acid supplementation and improving health status may form an effective approach to lower homocysteine.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together
$60+$
programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
We have detected 27 new supernova remnants (SNRs) using a new data release of the GLEAM survey from the Murchison Widefield Array telescope, including the lowest surface brightness SNR ever detected, G 0.1 – 9.7. Our method uses spectral fitting to the radio continuum to derive spectral indices for 26/27 candidates, and our low-frequency observations probe a steeper spectrum population than previously discovered. None of the candidates have coincident WISE mid-IR emission, further showing that the emission is non-thermal. Using pulsar associations we derive physical properties for six candidate SNRs, finding G 0.1 – 9.7 may be younger than 10 kyr. Sixty per cent of the candidates subtend areas larger than 0.2 deg2 on the sky, compared to < 25% of previously detected SNRs. We also make the first detection of two SNRs in the Galactic longitude range 220°–240°.
This work makes available a further
$2\,860~\text{deg}^2$
of the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey, covering half of the accessible galactic plane, across 20 frequency bands sampling 72–231 MHz, with resolution
$4\,\text{arcmin}-2\,\text{arcmin}$
. Unlike previous GLEAM data releases, we used multi-scale CLEAN to better deconvolve large-scale galactic structure. For the galactic longitude ranges
$345^\circ < l < 67^\circ$
,
$180^\circ < l < 240^\circ$
, we provide a compact source catalogue of 22 037 components selected from a 60-MHz bandwidth image centred at 200 MHz, with RMS noise
$\approx10-20\,\text{mJy}\,\text{beam}^{-1}$
and position accuracy better than 2 arcsec. The catalogue has a completeness of 50% at
${\approx}120\,\text{mJy}$
, and a reliability of 99.86%. It covers galactic latitudes
$1^\circ\leq|b|\leq10^\circ$
towards the galactic centre and
$|b|\leq10^\circ$
for other regions, and is available from Vizier; images covering
$|b|\leq10^\circ$
for all longitudes are made available on the GLEAM Virtual Observatory (VO).server and SkyView.
We examined the latest data release from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey covering 345° < l < 60° and 180° < l < 240°, using these data and that of the Widefield Infrared Survey Explorer to follow up proposed candidate Supernova Remnant (SNR) from other sources. Of the 101 candidates proposed in the region, we are able to definitively confirm ten as SNRs, tentatively confirm two as SNRs, and reclassify five as H ii regions. A further two are detectable in our images but difficult to classify; the remaining 82 are undetectable in these data. We also investigated the 18 unclassified Multi-Array Galactic Plane Imaging Survey (MAGPIS) candidate SNRs, newly confirming three as SNRs, reclassifying two as H ii regions, and exploring the unusual spectra and morphology of two others.
The Murchison Widefield Array (MWA) is an electronically steered low-frequency (<300 MHz) radio interferometer, with a ‘slew’ time less than 8 s. Low-frequency (∼100 MHz) radio telescopes are ideally suited for rapid response follow-up of transients due to their large field of view, the inverted spectrum of coherent emission, and the fact that the dispersion delay between a 1 GHz and 100 MHz pulse is on the order of 1–10 min for dispersion measures of 100–2000 pc/cm3. The MWA has previously been used to provide fast follow-up for transient events including gamma-ray bursts (GRBs), fast radio bursts (FRBs), and gravitational waves, using systems that respond to gamma-ray coordinates network packet-based notifications. We describe a system for automatically triggering MWA observations of such events, based on Virtual Observatory Event standard triggers, which is more flexible, capable, and accurate than previous systems. The system can respond to external multi-messenger triggers, which makes it well-suited to searching for prompt coherent radio emission from GRBs, the study of FRBs and gravitational waves, single pulse studies of pulsars, and rapid follow-up of high-energy superflares from flare stars. The new triggering system has the capability to trigger observations in both the regular correlator mode (limited to ≥0.5 s integrations) and using the Voltage Capture System (VCS, 0.1 ms integration) of the MWA and represents a new mode of operation for the MWA. The upgraded standard correlator triggering capability has been in use since MWA observing semester 2018B (July–Dec 2018), and the VCS and buffered mode triggers will become available for observing in a future semester.
We apply two methods to estimate the 21-cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uv-plane. The direct and gridded bispectrum estimators are applied to 21 h of high-band (167–197 MHz; z = 6.2–7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point-source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 h, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21-cm bispectrum may be accessible in less time than the 21-cm power spectrum for some wave modes, with detections in hundreds of hours.
In lifecourse studies that encompass the adolescent period, the assessment of pubertal status is important, but can be challenging. We aimed to identify current methods for pubertal assessment and assess their appropriateness for population-based research by combining a review of the literature with the views of experts in the field. We searched bibliographic databases, extracted data and assessed study quality to inform a workshop with 21 experts. Acceptability of different approaches was explored with a panel of ten adolescents. We screened 11,935 abstracts, assessed 157 articles and summarised results from 38 articles. Combining these with the opinions of experts, self-assessment was found to be a practical method for use in studies where agreement with the gold standard of clinical assessment by physical examination to within one Tanner stage was acceptable. Serial measures of height and foot size accurately indicated timing of the pubertal growth spurt and age at peak height velocity, and were seen as feasible within longitudinal studies. Hormonal and radiological methods did not offer a practical means of assessing pubertal status. Assessment of voice maturation was promising, but needed validation. Young people thought that self-assessment, foot size and voice assessments were acceptable, and preferred an assessor of the same sex for clinical assessment. This review thus informs researchers working in lifecourse and adolescent health, and identifies future directions in order to improve validity of the methods.
A common property regime was established at the founding of the Maya site of Actuncan, Belize, in the Terminal Preclassic period (175 BC–AD 300), which governed access to land until the Terminal Classic period (AD 780–1000). This interpretation is based on urban settlement patterns documented through household excavation and remote-sensing programs. Excavations of all visible patio-focused groups in the urban core provided data to reconstruct residential histories, and a 60,621 m2 gradiometer survey resulted in a magnetic gradient map that was used to document buried constructions. Twenty ground-truth testpits correlated types of magnetic signatures to buried patio-focused groups and smaller constructions, including walled plots in agricultural field systems that were later exposed more fully through large-scale excavations. Combined, these methods provided data to reconstruct four correlates of land tenure systems: (1) the spatial proximity of residential units to land and resources, (2) diachronic changes in community settlement patterns, (3) land subdivision and improvements, and (4) public goods. Spatial analyses documented that houselots did not cluster through time, but instead became gradually improved, lending evidence to suggest the transgenerational inheritance of property rights in the Late and Terminal Classic periods.
We provide the first in situ measurements of antenna element beam shapes of the Murchison Widefield Array. Most current processing pipelines use an assumed beam shape, which can cause absolute and relative flux density errors and polarisation ‘leakage’. Understanding the primary beam is then of paramount importance, especially for sensitive experiments such as a measurement of the 21-cm line from the epoch of reionisation, where the calibration requirements are so extreme that tile to tile beam variations may affect our ability to make a detection. Measuring the primary beam shape from visibilities is challenging, as multiple instrumental, atmospheric, and astrophysical factors contribute to uncertainties in the data. Building on the methods of Neben et al. [Radio Sci., 50, 614], we tap directly into the receiving elements of the telescope before any digitisation or correlation of the signal. Using ORBCOMM satellite passes we are able to produce all-sky maps for four separate tiles in the XX polarisation. We find good agreement with the beam model of Sokolowski et al. [2017, PASA, 34, e062], and clearly observe the effects of a missing dipole from a tile in one of our beam maps. We end by motivating and outlining additional on-site experiments.
The low-frequency polarisation properties of radio sources are poorly studied, particularly in statistical samples. However, the new generation of low-frequency telescopes, such as the Murchison Widefield Array (the precursor for the low-frequency component of the Square Kilometre Array) offers an opportunity to probe the physics of radio sources at very low radio frequencies. In this paper, we present a catalogue of linearly polarised sources detected at 216 MHz, using data from the Galactic and Extragalactic All-sky Murchison Widefield Array survey. Our catalogue covers the Declination range –17° to –37° and 24 h in Right Ascension, at a resolution of around 3 arcminutes. We detect 81 sources (including both a known pulsar and a new pulsar candidate) with linearly polarised flux densities in excess of 18 mJy across a survey area of approximately 6 400 deg2, corresponding to a surface density of 1 source per 79 deg2. The level of Faraday rotation measured for our sources is broadly consistent with those recovered at higher frequencies, with typically more than an order of magnitude improvement in the uncertainty compared to higher-frequency measurements. However, our catalogue is likely incomplete at low Faraday rotation measures, due to our practice of excluding sources in the region where instrumental leakage appears. The majority of sources exhibit significant depolarisation compared to higher frequencies; however, a small sub-sample repolarise at 216 MHz. We also discuss the polarisation properties of four nearby, large-angular-scale radio galaxies, with a particular focus on the giant radio galaxy ESO 422–G028, in order to explain the striking differences in polarised morphology between 216 MHz and 1.4 GHz.