We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Primary non-Hodgkin’s lymphoma (NHL) of the orbit is rare. Orbital NHLs show good response to both radiotherapy (RT) and chemotherapy, and hence, the emphasis should be to ensure maximum cure rate with minimum morbidity. In this study, we present the clinical profile and treatment outcomes of patients with NHL who had initial presentation in the orbit.
Materials and methods:
In this retrospective analysis, case records of patients with a diagnosis of NHL of the orbit were analysed from January 2005 to January 2015. Patients were worked up and staged according to the Ann Arbor system. Patients with large tumours were initially given chemotherapy with CHOP regimen (cyclophosphamide, vincristine, adriamycin and prednisolone) three weekly for 4–6 cycles. Patients with residual disease were given RT 20–30 Gy at 2 Gy per fraction. RT when given as a primary treatment consisted of 36–45 Gy at 1·8–2 Gy per fraction on either Cobalt 60 machine or linear accelerator.
Results:
A total of 52 patients with diagnosis of orbital NHL were included in this study. Median age at presentation was 57 years (range 13–71). Left, right and bilateral orbit was involved in 21 (40%), 28(54%) and 3(6%) patients, respectively. Low- and high-grade pathology was seen in 39(75%) and 13(25%) patients, respectively. On immunohistochemistry, 23(44%) tumors were CD 20 positive. After staging, 33 (63%) patients had stage I disease. Median tumour size was 4·0 × 3·2 × 1·5 cm (1·7 × 1·7 × 1·4 cm to 5·8 × 4·0 × 4·7 cm). Primary RT was given to 7(13%) patients. Upfront chemotherapy was given in 45(86·5%) patients, out of which 24 had stage I disease. RT consolidation was done in 26 (50%) patients for residual disease after chemotherapy. Median follow-up was 88 months (range 29–183 months). Relapse occurred in 6(9·6%) patients; 2 local; 2 local + distant and in 2 distant alone. These patients were successfully salvaged with systemic chemotherapy and local RT. One patient died due to neutropenia. Overall survival in this series was 96%.
Conclusions:
Excellent local control was achieved with initial chemotherapy followed by RT for primary orbital NHL with minimal toxicity. We recommend a dose of 36–40 Gy for definitive RT and 30 Gy for lymphoma following chemotherapy using 2 Gy/fraction for Indian patients who present with bulky tumours. RT should be incorporated in treatment of orbital NHL whenever possible as it is safe, effective and is associated with minimal complications.
In this study we compared radiation dose received by organs at risk (OARs) after breast conservation surgery(BCS) and mastectomy in patients with left breast cancer.
Materials and methods
Total 30 patients, 15 each of BCS and mastectomy were included in this study. Planning Computerised Tomography (CT) was done for each patient. Chest wall, whole breast, heart, lungs, LAD, proximal and distal LAD, and contra lateral breast was contoured for each patient. Radiotherapy plans were made by standard tangent field. Dose prescribed was 40Gy/16#/3 weeks. Mean heart dose, LAD, proximal and distal LAD, mean and V5 of right lung, and mean, V5, V10 and V20 of left lung, mean dose and V2 of contra lateral breast were calculated for each patient and compared between BCS and mastectomy patients using student’s T test.
Results
Mean doses to the heart, LAD, proximal LAD and distal LAD were 3.364Gy, 16.06Gy, 2.7Gy, 27.5Gy; and 4.219Gy, 14.653Gy, 4.306Gy, 24.6Gy, respectively for mastectomy and BCS patients. Left lung mean dose, V5, V10 and V20 were 5.96Gy, 16%, 14%, 12.4%; and 7.69Gy, 21%, 18% and 16% in mastectomy and BCS patients, respectively. There was no statistical significant difference in the doses to the heart and left lung between mastectomy and BCS. Mean dose to the right lung was significantly less in mastectomy as compared to BCS, 0.29Gy vs. 0.51Gy, respectively (p = 0.007). Mean dose to the opposite breast was significantly lower in patients with mastectomy than BCS (0.54Gy Vs 0.37Gy, p = 0.007). The dose to the distal LAD was significantly higher than proximal LAD both in BCS (24.6Gy Vs 4.3Gy, p = <0.0001) and mastectomy (27.5Gy Vs 2.7Gy, p = <0.0001) patients.
Conclusion
There was no difference in doses received by heart and left lung between BCS and mastectomy patients. Mean doses to the right lung and breast were significantly less in mastectomy patients.
The impact of loco-regional treatment (LRT) with radiotherapy (RT) in patients presenting with metastatic breast cancer (MBC) has not been widely studied. The aim of this study was to review the treatment outcomes of LRT including RT in patients with MBC.
Materials and methods:
Patients who presented with MBC were included in this retrospective study. Analysis was undertaken to determine the difference in local disease control, overall survival (OS) and progression-free survival (PFS) with systemic treatment alone, surgery alone, surgery plus RT and RT alone with long-rank test. Multivariate analysis was done, using the cox regression for factors affecting PFS and OS.
Results:
From 2007 to 2014, data of 257 patients with MBC were collected. Totally, 185 patients received LRT and 72 did not. LRT was surgery plus RT, surgery only and RT only in 113, 47 and 25 patients, respectively. Cytotoxic chemotherapy and hormone therapy were received by 205 and 166 patients, respectively. Median follow-up was 36 months (6–120 months). PFS and OS at 3 years with and without LRT were 31% versus 6% (p < 0·001) and 41% versus 17% (p < 0·001), respectively. PFS at 3 years with surgery plus RT, RT alone and surgery was 40, 33 and 6%, respectively. OS at 3 years with surgery plus RT, RT alone and surgery was 50, 38 and 17%, respectively. Patients without LRT had worse PFS and OS, 6 and 17%, respectively. RT had significant impact on PFS and OS along with chemotherapy and hormone treatment.
Conclusion:
In patients with MBC, improved local control, PFS and OS were achieved with loco-regional RT. Loco-regional RT along with chemotherapy and hormones were significant factors for PFS and OS irrespective of surgery.
Brain metastases (BM) are common in patients with HER2-positive and triple-negative breast cancer. In this study we aim to report clinical outcomes with LINAC-based stereotactic radiosurgery/radiotherapy (SRS/SRT) for BM in patients of breast cancer.
Methods:
Clinical and dosimetric records of breast cancer patients treated for BM at our institute between May, 2015 and December, 2019 were retrospectively reviewed. Patients of previously treated or newly diagnosed breast cancer with at least a radiological diagnosis of BM; 1–4 in number, ≤3·5 cm in maximum dimension, with a Karnofsky Performance Score of ≥60 were taken up for treatment with SRS. SRT was generally considered if a tumour was >3·5 cm in diameter, near a critical or eloquent structure, or if the proximity of moderately sized tumours would lead to dose bridging in a single-fraction SRS plan. The median prescribed SRS dose was 15 Gy (range 7–24 Gy) and SRT dose was 27 Gy in 3 fractions.
Clinical assessment and MR imaging was done at 6 weeks post-SRS and then every 3 months thereafter. Intracranial progression-free survival (PFS) and overall survival (OS) were calculated using Kaplan–Meier method and subgroups were compared using log rank test.
Results:
Total, 40 tumours were treated in 31 patients. The median tumour diameter was 2·3 cm (range 1·0–4·6 cm). SRS and SRT were delivered in 27 and 4 patients, respectively. SRS/SRT was given as a boost to whole brain radiotherapy (WBRT) in four patients and as salvage for progression after WBRT in six patients. In general, nine patients underwent prior surgery. The median follow-up was 7·9 months (0·2–34 months). Twenty (64·5%) patients developed local recurrence, 10 (32·3%) patients developed distant intracranial relapse and 7 patients had both local and distant intracranial relapse. The estimated local control at 6 months and 1 year was 48 and 35%, respectively. Median intracranial progression free survival (PFS) was 3·73 months (range 0·2–25 months). Median intracranial PFS was 3·02 months in patients who received SRS alone or as boost after WBRT, while it was 4·27 months in those who received SRS as salvage after WBRT (p = 0·793). No difference in intracranial PFS was observed with or without prior surgery (p = 0·410). Median overall survival (OS) was 21·7 months (range 0·2–34 months) for the entire cohort. Patients who received prior WBRT had a poor OS (13·31 months) as compared to SRS alone (21·4 months; p = 0·699).
Conclusion:
In patients with BM after breast cancer SRS alone, WBRT + SRS and surgery + SRS had comparable PFS and OS.
A pilot study was undertaken to find significance of vascular endothelial growth factor (VEGF) and cancer antigen (CA 15.3) in breast cancer patients.
Materials and methods
Total 70 patients with breast cancer were divided into triple negative breast cancer (TNBC) and non-TNBC depending on oestrogen receptors, progesterone receptors or HER-2/neu receptors status. Serum CA 15.3 and VEGF levels were evaluated with enzyme-linked immunosorbent assay at the time of diagnosis and were correlated with age, tumour size and stage of the disease in both the groups. Spearman's test was used to find the correlation.
Results
VEGF levels were found to be >400 pg/ml in 27 patients, 19 (54·33%) of them were TNBC and only 8 (22·87%) non-TNBC. Mean values of the VEGF were, 784·34 pg/ml in TNBC and 334·60 pg/ml non-TNBC patients, respectively. CA 15.3 level was found to be higher in non-TNBC group (60·72 U/ml) than in TNBC group (45·24 U/ml). In all patients significant correlation was found between serum CA 15.3 level and tumour size and stage of the disease. In non-TNBC patients significant correlation was seen between CA 15.3 values and stage of the disease, but VEGF had no correlation with any of the disease parameters. In TNBC patients, there was no correlation between CA 15.3 level and any of the disease parameters but VEGF showed a significant correlation with both tumour size and stage of the disease.
Conclusion
Expression profile of VEGF was high in TNBC than non-TNBC patients. VEGF serves to be a better biomarker as compared with CA 15.3 in TNBC patients.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.