We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While inflammation is associated with cognitive impairment in severe mental illnesses (SMI), there is substantial heterogeneity and evidence of transdiagnostic subgroups across schizophrenia (SZ) and bipolar (BD) spectrum disorders. There is however, limited knowledge about the longitudinal course of this relationship.
Methods
Systemic inflammation (C-Reactive Protein, CRP) and cognition (nine cognitive domains) was measured from baseline to 1 year follow-up in first treatment SZ and BD (n = 221), and healthy controls (HC, n = 220). Linear mixed models were used to evaluate longitudinal changes separately in CRP and cognitive domains specific to diagnostic status (SZ, BD, HC). Hierarchical clustering was applied on the entire sample to investigate the longitudinal course of transdiagnostic inflammatory-cognitive subgroups.
Results
There were no case-control differences or change in CRP from baseline to follow-up. We confirm previous observations of case-control differences in cognition at both time-points and domain specific stability/improvement over time regardless of diagnostic status. We identified transdiagnostic inflammatory-cognitive subgroups at baseline with differing demographics and clinical severity. Despite improvement in cognition, symptoms and functioning, the higher inflammation – lower cognition subgroup (75% SZ; 48% BD; 38% HC) had sustained inflammation and lower cognition, more symptoms, and lower functioning (SMI only) at follow-up. This was in comparison to a lower inflammation – higher cognition subgroup (25% SZ, 52% BD, 62% HC), where SMI participants showed cognitive functioning at HC level with a positive clinical course.
Conclusions
Our findings support heterogenous and transdiagnostic inflammatory-cognitive subgroups that are stable over time, and may benefit from targeted interventions.
Intellectual functioning (IQ) is lower in schizophrenia patients compared to healthy controls, with bipolar patients intermediate between the two. Declines in IQ mark the onset of schizophrenia, while stability is generally found post-onset. There are to date few studies on long-term IQ development in bipolar disorder. This study presents 10-year follow-up data on IQ, including premorbid IQ estimates, to track the developmental course from pre-onset levels to long-term outcomes in both patient groups compared to healthy controls.
Methods
We included 139 participants with schizophrenia, 76 with bipolar disorder and 125 healthy controls. Mixed model analyses were used to estimate developmental slopes for IQ scores from estimated premorbid level (NART IQ) through baseline (WASI IQ) measured within 12 months post-onset, to 10-year follow-up (WASI IQ), with pairwise group comparisons. The best fit was found using a model with a breakpoint at baseline assessment.
Results
Only the schizophrenia group had significant declines from estimated premorbid to baseline IQ levels compared to controls. When comparing patient groups, schizophrenia patients had steeper declines than the bipolar group. Increases in IQ were found in all groups over the follow-up period.
Conclusions
Trajectories of IQ from premorbid level to 10-year follow-up indicated declines from estimated premorbid level to illness onset in both patient groups, followed by increases during the follow-up period. Schizophrenia patients had a steeper decline than bipolar patients. During follow-up, increases indicate developmental improvement for both patient groups, but with a maintained lag compared to healthy controls due to lower premorbid levels.
Cognitive dysfunction cut across diagnostic categories and is present in both schizophrenia and bipolar disorder, although with considerable heterogeneity in both disorders. This study examined if distinct cognitive subgroups could be identified across schizophrenia and bipolar disorder based on the intellectual trajectory from the premorbid phase to after illness onset.
Method:
Three hundred and ninety-eight individuals with schizophrenia (n = 223) or bipolar I disorder (n = 175) underwent clinical and neuropsychological assessment. Hierarchical and k-means cluster analyses using premorbid (National Adult Reading Test) and current IQ (Wechsler Abbreviated Scale of Intelligence) estimates were performed for each diagnostic category, and the whole sample collapsed. Resulting clusters were compared on neuropsychological, functional, and clinical variables. Healthy controls (n = 476) were included for analyses of neuropsychological performance.
Results:
Cluster analyses consistently yielded three clusters: a relatively intact group (36% of whole sample), an intermediate group with mild cognitive impairment (44%), and an impaired group with global deficits (20%). The clusters were validated by multinomial logistic regression and differed significantly for neuropsychological, functional, and clinical measures. The relatively intact group (32% of the schizophrenia sample and 42% of the bipolar sample) performed below healthy controls for speeded neuropsychological tests.
Conclusions:
Three cognitive clusters were identified across schizophrenia and bipolar disorder using premorbid and current IQ estimates. Groups differed for clinical, functional, and neuropsychological variables, implying their meaningfulness. One-third of the schizophrenia sample belonged to the relatively intact group, highlighting that neuropsychological assessment is needed for the precise characterization of the individual.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.