We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is the fourth in a 5-part series that focuses on educating and training the clinical and translational science workforce. The goal of this paper is to delineate components of effective career development programs that go beyond didactic training. All academic health centers with a Clinical and Translational Science Award have a KL2 career development award for junior faculty, and many also have a TL1 training program for predoctoral and postdoctoral fellows. The training across these programs varies, however junior investigators across the United States experience similar challenges. Junior investigators can get overwhelmed with the demands of building their own research program, particularly in academia. 1Often, they are sidetracked by competing demands that can derail their progress. In these situations, junior investigators experience frustration and may search for alternative career paths. By providing them with additional professional skills in the 5 domains of: (1) self-awareness; (2) selecting the right topic and securing funding; (3) getting adequate support; (4) working with others; and (5) managing yourself, your career, and your demands. We will give junior investigators additional tools to manage these demands and facilitate their own career success.
Current calibration methods for single and replicate 14C dates are compared. Various forms of tabular and graphic output are discussed. Results from all the methods show reasonable agreement but further methodological development and improvements in computer output are required. Comparison of existing techniques for a series of non-contemporaneous dates showed less agreement amongst participants on this issue. We recommend that calibrated dates should be presented as a combination of graphs and ranges, in preference to mean and standard deviation.
GRS1915+105 is an extraordinary X-ray transient which exhibits superluminal radio jets. In this paper, ASCA observations of the GRS1915+105 conducted from 1994 to 1997 are reported. Observations are carried out on the following dates each for ~ 20 ksec exposure; Sep 27 1994, April 20 1995, Oct 23 1996 and Apr 25 1997.
Observations of galactic HII regions in the longitude range 280° to 300° have recently been made at the OH-line frequencies 1612.231, 1665.402 and 1667.358 MHz using the Parkes radio telescope. Strong emission was observed at 1612 and 1665 MHz from a source near the regions of Hα emission RCW 48 and RCW 49 (Rodgers, Campbell and Whiteoak).
In 1966 McGee, Gardner and Robinson carried out an exploratory search at 1665 MHz for OH in 26 thermal sources in the southern Milky Way and reported emission in 12 sources. Subsequent measurements by Robinson, Goss and Manchester confirmed emission from six of these and detected four additional OH emitters.
We present an overview of the survey for radio emission from active stars that has been in progress for the last six years using the observatories at Fleurs, Molonglo, Parkes and Tidbinbilla. The role of complementary optical observations at the Anglo-Australian Observatory, Mount Burnett, Mount Stromlo and Siding Spring Observatories and Mount Tamborine are also outlined. We describe the different types of star that have been included in our survey and discuss some of the problems in making the radio observations.
Time variations in both the NGC 6334 and Orion OH sources have been reported by the Berkeley group. The variations in NGC 6334 have been partially confirmed by the group at the Lincoln Laboratory, who show that the variations are confined to the southern source, NGC 6334B. These latter authors find variable components at —6.6 and —7.9 km/s at 1665 MHz and at —8.9 km/s at 1667 MHz. Both features at 1665 MHz appear to vary, both up and down, with time; during 1966 October the characteristic rise time was nine days or less. The Berkeley results show that the linear polarization was constant during a two-week period in 1965 October. The Lincoln Laboratory results from 1966 October to 1967 June show that both the degree and sense of circular polarization remain constant as the three features vary with time.
Millimetre-wave emission from the CO molecule has proven to be an extremely useful probe of the cold, dense clouds of molecular hydrogen in the Galaxy. Previous studies of the large-scale distribution of CO in the galactic plane (Scoville and Solomon 1975; Burton et al. 1975; Bash and Peters 1976; Burton and Gordon 1978; Solomon et al. 1979b; Cohen et al. 1980) have all been of the northern hemisphere and primarily at longitudes 0° ≤ l ≥ 80°. These studies have revealed the striking characteristic that the CO, and by implication molecular hydrogen clouds, are concentrated in a ring extending from 4 to 8 kpc from the galactic centre. This is in sharp contrast to the atomic hydrogen distribution, which is fairly constant over the extended region from 4 to 13 kpc but correlates well with other Population I indicators.
During 1968 we have found at Parkes several types of emission in the lines of the 18 cm quadruplet of the ground-state OH molecule. This note describes a strong source of 1612 MHz emission near galactic longitude 331°.
OH emission was originally detected in the vicinity of HII regions, and a search of a large number of HII regions showed that about a third had associated OH emission. This type of emission is usually strongest at 1665 MHz, and is also seen at 1667 MHz and weakly on one of the satellite lines.
The purpose of this study was to describe the longitudinal trajectories and bidirectional relationships of the physical-social and emotional functioning (EF) dimensions of positive aging and to identify their baseline characteristics.
Methods:
Women age 65 and older who enrolled in one or more Women's Health Initiative clinical trials (WHI CTs) and who had positive aging indicators measured at baseline and years 1, 3, 6, and 9 were included in these analyses (N = 2281). Analytic strategies included latent class growth modeling to identify longitudinal trajectories and multinomial logistic regression to examine the effects of baseline predictors on these trajectories.
Results:
A five-trajectory model was chosen to best represent the data. For Physical-Social Functioning (PSF), trajectory groups included Low Maintainer (8.3%), Mid-Low Improver (10.4%), Medium Decliner (10.7%), Mid-High Maintainer (31.2%), and High Maintainer (39.4%); for EF, trajectories included Low Maintainer (3%), Mid-Low Improver (9%), Medium Decliner (7.7%), Mid-High Maintainer (22.8%), and High Maintainer (57.5%). Cross-classification of the groups of trajectories demonstrated that the impact of a high and stable EF on PSF might be greater than the reverse. Low depression symptoms, low pain, and high social support were the most consistent predictors of high EF trajectories.
Conclusion:
Aging women are heterogeneous in terms of positive aging indicators for up to 9 years of follow-up. Interventions aimed at promoting sustainable EF might have diffused effects on other domains of healthy aging.
Methanol-water (4:1, v/v) crude extracts (50 mg mL−1) of 25 Jamaican medicinal plants were screened in vitro for anthelmintic activity using infective third-stage larvae of Strongyloides stercoralis. The most effective extract was further chemically scrutinized to isolate and identify the source of the bioactivity, and the efficacy of this compound was compared with ivermectin. Eosin exclusion (0·1 mg mL−1) served as the indicator of mortality in all bioassays. A crude extract of Eryngium foetidum (Apiaceae) was significantly (Probit Analysis, P<0·05) more potent than the other plant extracts, taking 18·9 h to kill 50% (LT50) of the larvae. Further, the petrol extract of E. foetidum was significantly more effective (Probit Analysis, P<0·05) at killing the larvae (LT50, 4·7 h) than either its methanol–water or dichloromethane extract. The latter two effected less than 1% larval mortality after 120 h. With bioassay-driven column chromatography of the petrol extract, trans-2-dodecenal (eryngial) was identified and chemically isolated as the main anthelmintic compound in E. foetidum. There was a significant difference between the 24 h LD50 values (mm) of trans-2-dodecenal (0·461) and ivermectin (2·251) but there was none between the 48 h LD50 values (mm): trans-2-dodecenal (0·411) and ivermectin (0·499) in vitro.
Edited by
Alex S. Evers, Washington University School of Medicine, St Louis,Mervyn Maze, University of California, San Francisco,Evan D. Kharasch, Washington University School of Medicine, St Louis
Despite substantial recent advancements in psychiatric genetic research, progress in identifying the genetic basis of anxiety disorders has been limited. We review the candidate gene and genome-wide literatures in anxiety, which have made limited progress to date. We discuss several reasons for this hindered progress, including small samples sizes, heterogeneity, complicated comorbidity profiles, and blurred lines between normative and pathological anxiety. To address many of these challenges, we suggest a developmental, multivariate framework that can inform and enhance anxiety phenotypes for genetic research. We review the psychiatric and genetic epidemiological evidence that supports such a framework, including the early onset and chronic course of anxiety disorders, shared genetic risk factors among disorders both within and across time, and developmentally dynamic genetic influences. We propose three strategies for developmentally sensitive phenotyping: examination of early temperamental risk factors, use of latent factors to model underlying anxiety liability, and use of developmental trajectories as phenotypes. Expanding the range of phenotypic approaches will be important for advancing studies of the genetic architecture of anxiety disorders.