We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The redshifted cosmological 21-cm signal emitted by neutral hydrogen during the first billion years of the universe is much fainter relative to other galactic and extragalactic radio emissions, posing a great challenge towards detection of the signal. Therefore, precise instrumental calibration is a vital prerequisite for the success of radio interferometers such as the Murchison Widefield Array (MWA), which aim for a 21-cm detection. Over the previous years, novel calibration techniques targeting the power spectrum paradigm of EoR science have been actively researched and where possible implemented. Some of these improvements, for the MWA, include the accuracy of sky models used in calibration and the treatment of ionospheric effects, both of which introduce unwanted contamination to the EoR window. Despite sophisticated non-traditional calibration algorithms being continuously developed over the years to incorporate these methods, the large datasets needed for EoR measurements require high computational costs, leading to trade-offs that impede making use of these new tools to maximum benefit. Using recently acquired computation resources for the MWA, we test the full capabilities of the state-of-the-art calibration techniques available for the MWA EoR project, with a focus on both direction-dependent and direction-independent calibration. Specifically, we investigate improvements that can be made in the vital calibration stages of sky modelling, ionospheric correction, and compact source foreground subtraction as applied in the hybrid foreground mitigation approach (one that combines both foreground subtraction and avoidance). Additionally, we investigate a method of ionospheric correction using interpolated ionospheric phase screens and assess its performance in the power spectrum space. Overall, we identify a refined RTS calibration configuration that leads to an at least 2 factor reduction of the EoR window power contamination at the
$0.1 \; \textrm{hMpc}^{-1}$
scale. The improvement marks a step further towards detecting the 21-cm signal using the MWA and the forthcoming SKA low telescope.
To overcome grass supply shortages on the main grazing block, some pasture-based dairy farmers are using zero-grazing (also known as ‘cut and carry’), whereby cows are periodically housed and fed fresh grass harvested from external land blocks. To determine the effect of zero-grazing on cow performance, two early-lactation experiments were conducted with autumn and spring-calving dairy cows. Cows were assigned to one of two treatments in a randomized complete block design. The two treatments were zero-grazing (ZG) and grazing (G). The ZG group were housed and fed zero-grazed grass, while the G group grazed outdoors at pasture. Both treatments were fed perennial ryegrass (Lolium perenne L.) from the same paddock. In experiment 1, 24 Holstein Friesian cows (n = 12) were studied over a 35-day experimental period in autumn and offered fresh grass, grass silage, ground maize and concentrates. In experiment 2, 30 Holstein Friesian cows (n = 15) were studied over a 42-day experimental period and offered fresh grass and concentrates. Average dry matter intake and milk yield was similar for ZG and G in both experiments. Likewise, ZG did not have an effect on milk composition, body condition or locomotion. Zero-grazing had no effect on total nitrogen excretion or nitrogen utilization efficiency in either experiment, or on rumen pH and ammonia concentration in experiment 1. While zero-grazing may enable farmers to supply fresh grass to early-lactation cows in spring and autumn, results from this study suggest that there are no additional benefits to cow performance in comparison to well-managed grazed grass.
One of the principal systematic constraints on the Epoch of Reionisation (EoR) experiment is the accuracy of the foreground calibration model. Recent results have shown that highly accurate models of extended foreground sources, and including models for sources in both the primary beam and its sidelobes, are necessary for reducing foreground power. To improve the accuracy of the source models for the EoR fields observed by the Murchison Widefield Array (MWA), we conducted the MWA Long Baseline Epoch of Reionisation Survey (LoBES). This survey consists of multi-frequency observations of the main MWA EoR fields and their eight neighbouring fields using the MWA Phase II extended array. We present the results of the first half of this survey centred on the MWA EoR0 observing field (centred at RA (J2000)
$0^\mathrm{h}$
, Dec (J2000)
$-27^{\circ}$
). This half of the survey covers an area of 3 069 degrees
$^2$
, with an average rms of 2.1 mJy beam–1. The resulting catalogue contains a total of 80 824 sources, with 16 separate spectral measurements between 100 and 230 MHz, and spectral modelling for 78
$\%$
of these sources. Over this region we estimate that the catalogue is 90
$\%$
complete at 32 mJy, and 70
$\%$
complete at 10.5 mJy. The overall normalised source counts are found to be in good agreement with previous low-frequency surveys at similar sensitivities. Testing the performance of the new source models we measure lower residual rms values for peeled sources, particularly for extended sources, in a set of MWA Phase I data. The 2-dimensional power spectrum of these data residuals also show improvement on small angular scales—consistent with the better angular resolution of the LoBES catalogue. It is clear that the LoBES sky models improve upon the current sky model used by the Australian MWA EoR group for the EoR0 field.
The Epoch of Reionisation (EoR) is the period within which the neutral universe transitioned to an ionised one. This period remains unobserved using low-frequency radio interferometers, which target the 21 cm signal of neutral hydrogen emitted in this era. The Murchison Widefield Array (MWA) radio telescope was built with the detection of this signal as one of its major science goals. One of the most significant challenges towards a successful detection is that of calibration, especially in the presence of the Earth’s ionosphere. By introducing refractive source shifts, distorting source shapes, and scintillating flux densities, the ionosphere is a major nuisance in low-frequency radio astronomy. We introduce sivio, a software tool developed for simulating observations of the MWA through different ionospheric conditions, which is estimated using thin screen approximation models and propagated into the visibilities. This enables us to directly assess the impact of the ionosphere on observed EoR data and the resulting power spectra. We show that the simulated data captures the dispersive behaviour of ionospheric effects. We show that the spatial structure of the simulated ionospheric media is accurately reconstructed either from the resultant source positional offsets or from parameters evaluated during the data calibration procedure. In turn, this will inform on the best strategies of identifying and efficiently eliminating ionospheric contamination in EoR data moving into the Square Kilometre Array era.
This research communication addressed the hypothesis that late lactation cows offered an oat-grain-based supplement or a high level of α-TOC supplementation at pasture would have improved milk composition and processability. Over a grazing period of 49 d, 48 Holstein Friesian dairy cows were randomly assigned to one of four dietary treatments. The dietary treatments were: control, pasture only (CTRL), pasture + 2.65 kg DM barley-based concentrate + 350 IU α-TOC/kg (BARLO), pasture + 2.65 kg DM oat-based concentrate + 350 IU α-TOC/kg (OATLO) and pasture + 2.65 kg DM oat-based concentrate + 1050 IU α-TOC/kg (OATHI). Within this randomised complete block design experiment cows were blocked on days in milk (DIM) and balanced for parity, milk yield and composition. Rennet coagulation time (RCT) was reduced in milk from cows offered OATHI compared to CTRL cows and OATLO. Concentration of conjugated linoleic acid (CLA) was increased by OATHI compared to OATLO and in OATLO compared to CTRL. Supplementation with OATHI reduced individual saturated fatty acids (SFAs) in milk compared to OATLO. In conclusion, supplementing grazing dairy cows with an oat-based supplement improved total milk CLA concentration compared to pasture only. Offering a high level of α-TOC (2931 IU/d) to dairy cows reduced RCT, individual SFA and increased total CLA concentration of milk compared to a lower α-TOC level (738 IU α-TOC/d).
In this chapter we provide an overview of the development of green criminology and focus specifically on a political economic perspective within green criminology that builds on the treadmill of production tradition in environmental sociology and ecological Marxism. This perspective calls for a scientifically grounded harms-based approach that studies green crimes, which are defined as unnecessary ecological disorganization. The treadmill of production framework organizes environmental destruction (or, ecological disorganization) into ecological withdrawals (i.e. the removal of resources from nature) and ecological additions (i.e. pollution). We review green criminological work in these two areas. We next provide an overview of research that links the traditional criminological perspective, social disorganization, to green crimes. We then turn to a discussion of how the treadmill of production impacts nonhuman species. We finish our review of political economic green criminology with some thoughts on the role of non-state actors in the treadmill of production, environmental enforcement and what we call the treadmill of law.
Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The Murchison Widefield Array’s (MWA) Phase II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR) experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in Li et al. (2018) and (2019) studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum (PS) over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements in the PS from tandem calibration are significant. To understand this result, we analyse both the calibration solutions themselves and the effects on the PS over three nights of EoR1 observations. We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that redundant calibration can indeed mitigate some level of model incompleteness error.
Compulsory admission procedures of patients with mental disorders vary between countries in Europe. The Ethics Committee of the European Psychiatric Association (EPA) launched a survey on involuntary admission procedures of patients with mental disorders in 40 countries to gather information from all National Psychiatric Associations that are members of the EPA to develop recommendations for improving involuntary admission processes and promote voluntary care.
Methods.
The survey focused on legislation of involuntary admissions and key actors involved in the admission procedure as well as most common reasons for involuntary admissions.
Results.
We analyzed the survey categorical data in themes, which highlight that both medical and legal actors are involved in involuntary admission procedures.
Conclusions.
We conclude that legal reasons for compulsory admission should be reworded in order to remove stigmatization of the patient, that raising awareness about involuntary admission procedures and patient rights with both patients and family advocacy groups is paramount, that communication about procedures should be widely available in lay-language for the general population, and that training sessions and guidance should be available for legal and medical practitioners. Finally, people working in the field need to be constantly aware about the ethical challenges surrounding compulsory admissions.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together
$60+$
programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
The Murchison Widefield Array (MWA) is an electronically steered low-frequency (<300 MHz) radio interferometer, with a ‘slew’ time less than 8 s. Low-frequency (∼100 MHz) radio telescopes are ideally suited for rapid response follow-up of transients due to their large field of view, the inverted spectrum of coherent emission, and the fact that the dispersion delay between a 1 GHz and 100 MHz pulse is on the order of 1–10 min for dispersion measures of 100–2000 pc/cm3. The MWA has previously been used to provide fast follow-up for transient events including gamma-ray bursts (GRBs), fast radio bursts (FRBs), and gravitational waves, using systems that respond to gamma-ray coordinates network packet-based notifications. We describe a system for automatically triggering MWA observations of such events, based on Virtual Observatory Event standard triggers, which is more flexible, capable, and accurate than previous systems. The system can respond to external multi-messenger triggers, which makes it well-suited to searching for prompt coherent radio emission from GRBs, the study of FRBs and gravitational waves, single pulse studies of pulsars, and rapid follow-up of high-energy superflares from flare stars. The new triggering system has the capability to trigger observations in both the regular correlator mode (limited to ≥0.5 s integrations) and using the Voltage Capture System (VCS, 0.1 ms integration) of the MWA and represents a new mode of operation for the MWA. The upgraded standard correlator triggering capability has been in use since MWA observing semester 2018B (July–Dec 2018), and the VCS and buffered mode triggers will become available for observing in a future semester.
Haplosporidian protist parasites are a major concern for aquatic animal health, as they have been responsible for some of the most significant marine epizootics on record. Despite their impact on food security, aquaculture and ecosystem health, characterizing haplosporidian diversity, distributions and host range remains challenging. In this study, water filtering bivalve species, cockles Cerastoderma edule, mussels Mytilus spp. and Pacific oysters Crassostrea gigas, were screened using molecular genetic assays using deoxyribonucleic acid (DNA) markers for the Haplosporidia small subunit ribosomal deoxyribonucleic acid region. Two Haplosporidia species, both belonging to the Minchinia clade, were detected in C. edule and in the blue mussel Mytilus edulis in a new geographic range for the first time. No haplosporidians were detected in the C. gigas, Mediterranean mussel Mytilus galloprovincialis or Mytilus hybrids. These findings indicate that host selection and partitioning are occurring amongst cohabiting bivalve species. The detection of these Haplosporidia spp. raises questions as to whether they were always present, were introduced unintentionally via aquaculture and or shipping or were naturally introduced via water currents. These findings support an increase in the known diversity of a significant parasite group and highlight that parasite species may be present in marine environments but remain undetected, even in well-studied host species.
The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
We apply two methods to estimate the 21-cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uv-plane. The direct and gridded bispectrum estimators are applied to 21 h of high-band (167–197 MHz; z = 6.2–7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point-source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 h, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21-cm bispectrum may be accessible in less time than the 21-cm power spectrum for some wave modes, with detections in hundreds of hours.
The Pacific oyster Crassostrea gigas contributes significantly to global aquaculture; however, C. gigas culture has been affected by ostreid herpesvirus-1 (OsHV-1) and variants. The dynamics of how the virus maintains itself at culture sites is unclear and the role of carriers, reservoirs or hosts is unknown. Both wild and cultured mussels Mytilus spp. (Mytilus edulis, Mytilus galloprovincialis and hybrids) are commonly found at C. gigas culture sites. The objective of this study was to investigate if Mytilus spp. can harbour the virus and if viral transmission can occur between mussels and oysters. Mytilus spp. living at oyster trestles, 400–500 m higher up the shore from the trestles and up to 26 km at non-culture sites were screened for OsHV-1 and variants by all the World Organization for Animal Health (OIE) recommended diagnostic methods including polymerase chain reaction (PCR), quantitative PCR (qPCR), histology, in situ hybridization and confirmation using direct sequencing. The particular primers that target OsHV-1 and variants, including OsHV-1 microVar (μVar), were used in the PCR and qPCR. OsHV-1 μVar was detected in wild Mytilus spp. at C. gigas culture sites and more significantly the virus was detected in mussels at non-culture sites. Cohabitation of exposed wild mussels and naïve C. gigas resulted in viral transmission after 14 days, under an elevated temperature regime. These results indicate that mussels can harbour OsHV-1 μVar; however, the impact of OsHV-1 μVar on Mytilus spp. requires further investigation.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
We present techniques developed to calibrate and correct Murchison Widefield Array low-frequency (72–300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degree-scale structure that the Murchison Widefield Array provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the Murchison Widefield Array, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.
We present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array telescope. We searched the GaLactic and Extragalactic All-sky Murchison Widefield Array survey images for 200-MHz continuum radio emission at the position of all pulsars in the Australia Telescope National Facility (ATNF) pulsar catalogue. For the 60 confirmed detections, we have measured flux densities in 20 × 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the Murchison Widefield Array flux densities are in good agreement.
Uranium-series methods were used to date and evaluate pedogenic CaCO3 genesis in the Pinacate volcanic field, northwestern Sonora, Mexico. Soils are developed in eolian deposits on lava flows. 230Th/234U dates of pedogenic carbonate are mininum soil ages because of (1) the time needed to yield clasts from flows and to accrete enough carbonate to sample, (2) subsequent additions of uranium, and (3) continued solution and reprecipitation of carbonate rinds. K-Ar dates of basalt flows are maximum soil ages. Maximum and minimum rates of CaCO3 accumulation are calculated from the Th/U dates and K-Ar dates, respectively. The mean maximum rate is 0.13 g CaCO3/cm2/1000 yr and the mean minimum rate is 0.05 g CaCO3/cm2/1000 yr. Least-squares regressions of pedogenic carbonate and clay content and of Th/U ages against K-Ar ages suggest additions to soils from atmospheric sources throughout the late Quaternary. Morphology of pedogenic carbonate and laboratory data for soluble salts indicate that the climate of the Pinacate has not changed significantly during the past 150,000 yr. Soil variability is influenced by proximity of the eolian source. Near the periphery of the Pinacate, carbonate and clay are evenly distributed throughout soil profiles. Within the volcanic field, carbonate and clay are concentrated in soil horizons, suggesting that additions from atmospheric sources are slow enough to allow translocation.
We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.