We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suicide attempts are a moderately heritable trait, and genetic correlations with psychiatric and related intermediate phenotypes have been reported. However, as several mental disorders as well as major depressive disorder (MDD) are strongly associated with suicide attempts, these genetic correlations could be mediated by psychiatric disorders. Here, we investigated genetic correlations of suicide attempts with psychiatric and related intermediate phenotypes, with and without adjusting for mental disorders.
Methods
To investigate the genetic correlations, we utilized large-scale genome-wide association study summary statistics for suicide attempts (with and without adjusting for mental disorders), nine psychiatric disorders, and 15 intermediate phenotypes.
Results
Without adjusting for mental disorders, suicide attempts had significant positive genetic correlations with risks of attention-deficit/hyperactivity disorder, schizophrenia, bipolar disorder, MDD, anxiety disorders and posttraumatic stress disorder; higher risk tolerance; earlier age at first sexual intercourse, at first birth and at menopause; higher parity; lower childhood IQ, educational attainment and cognitive ability; and lower smoking cessation. After adjusting for mental disorders, suicide attempts had significant positive genetic correlations with the risk of MDD; earlier age at first sexual intercourse, at first birth and at menopause; and lower educational attainment. After adjusting for mental disorders, most of the genetic correlations with psychiatric disorders were decreased, while several genetic correlations with intermediate phenotypes were increased.
Conclusions
These findings highlight the importance of considering mental disorders in the analysis of genetic correlations related to suicide attempts and suggest that susceptibility to MDD, reproductive behaviors, and lower educational levels share a genetic basis with suicide attempts after adjusting for mental disorders.
Individuals with schizophrenia (SCZ) and bipolar disorder (BD) display cognitive impairments, but the impairments in those with SCZ are more prominent, supported by genetic overlap between SCZ and cognitive impairments. However, it remains unclear whether cognitive performances differ between individuals at high and low genetic risks for SCZ or BD.
Methods
Using the latest Psychiatric Genomics Consortium (PGC) data, we calculated PGC3 SCZ-, PGC3 BD-, and SCZ v. BD polygenic risk scores (PRSs) in 173 SCZ patients, 70 unaffected first-degree relatives (FRs) and 196 healthy controls (HCs). Based on combinations of three PRS deciles, individuals in the genetic SCZ, genetic BD and low genetic risk groups were extracted. Cognitive performance was assessed by the Brief Assessment of Cognition in Schizophrenia.
Results
SCZ-, BD-, SCZ v. BD-PRSs were associated with case–control status (R2 = 0.020–0.061), and SCZ-PRS was associated with relative–control status (R2 = 0.023). Furthermore, individuals in the highest decile for SCZ PRSs had elevated BD-PRSs [odds ratio (OR) = 6.33] and SCZ v. BD-PRSs (OR = 1.86) compared with those in the lowest decile. Of the three genetic risk groups, the low genetic risk group contained more HCs, whereas the genetic BD and SCZ groups contained more SCZ patients (p < 0.05). SCZ patients had widespread cognitive impairments, and FRs had cognitive impairments that were between those of SCZ patients and HCs (p < 0.05). Cognitive differences between HCs in the low genetic risk group and SCZ patients in the genetic BD or genetic SCZ groups were more prominent (Cohen's d > −0.20) than those between HCs and SCZ patients in the no genetic risk group. Furthermore, SCZ patients in the genetic SCZ group displayed lower scores in verbal fluency and attention than those in the genetic BD group (d > −0.20).
Conclusions
Our findings suggest that cognitive impairments in SCZ are partially mediated through genetic loadings for SCZ but not BD.
Intelligence is inversely associated with schizophrenia (SCZ) and bipolar disorder (BD); it remains unclear whether low intelligence is a cause or consequence. We investigated causal associations of intelligence with SCZ or BD risk and a shared risk between SCZ and BD and SCZ-specific risk.
Methods
To estimate putative causal associations, we performed multi-single nucleotide polymorphism (SNP) Mendelian randomization (MR) using generalized summary-data-based MR (GSMR). Summary-level datasets from five GWASs (intelligence, SCZ vs. control [CON], BD vs. CON, SCZ + BD vs. CON, and SCZ vs. BD; sample sizes of up to 269,867) were utilized.
Results
A strong bidirectional association between risks for SCZ and BD was observed (odds ratio; ORSCZ → BD = 1.47, p = 2.89 × 10−41, ORBD → SCZ = 1.44, p = 1.85 × 10−52). Low intelligence was bidirectionally associated with a high risk for SCZ, with a stronger effect of intelligence on SCZ risk (ORlower intelligence → SCZ = 1.62, p = 3.23 × 10−14) than the reverse (ORSCZ → lower intelligence = 1.06, p = 3.70 × 10−23). Furthermore, low intelligence affected a shared risk between SCZ and BD (OR lower intelligence → SCZ + BD = 1.23, p = 3.41 × 10−5) and SCZ-specific risk (ORlower intelligence → SCZvsBD = 1.64, p = 9.72 × 10−10); the shared risk (ORSCZ + BD → lower intelligence = 1.04, p = 3.09 × 10−14) but not SCZ-specific risk (ORSCZvsBD → lower intelligence = 1.00, p = 0.88) weakly affected low intelligence. Conversely, there was no significant causal association between intelligence and BD risk (p > 0.05).
Conclusions
These findings support observational studies showing that patients with SCZ display impairment in premorbid intelligence and intelligence decline. Moreover, a shared factor between SCZ and BD might contribute to impairment in premorbid intelligence and intelligence decline but SCZ-specific factors might be affected by impairment in premorbid intelligence. We suggest that patients with these genetic factors should be categorized as having a cognitive disorder SCZ or BD subtype.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.