We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Case-only longitudinal studies are common in psychiatry. Further, it is assumed that psychiatric ratings and questionnaire results of healthy controls stay stable over foreseeable time ranges. For cognitive tests, improvements over time are expected, but data for more than two administrations are scarce.
Aims
We comprehensively investigated the longitudinal course for trends over time in cognitive and symptom measurements for severe mental disorders. Assessments included the Trail Making Tests, verbal Digit Span tests, Global Assessment of Functioning, Inventory of Depressive Symptomatology, the Positive and Negative Syndrome Scale, and the Young Mania Rating Scale, among others.
Method
Using the data of control individuals (n = 326) from the PsyCourse study who had up to four assessments over 18 months, we modelled the course using linear mixed models or logistic regression. The slopes or odds ratios were estimated and adjusted for age and gender. We also assessed the robustness of these results using a longitudinal non-parametric test in a sensitivity analysis.
Results
Small effects were detected for most cognitive tests, indicating a performance improvement over time (P < 0.05). However, for most of the symptom rating scales and questionnaires, no effects were detected, in line with our initial hypothesis.
Conclusions
The slightly but consistently improved performance in the cognitive tests speaks of a test-unspecific positive trend, while psychiatric ratings and questionnaire results remain stable over the observed period. These detectable improvements need to be considered when interpreting longitudinal courses. We therefore recommend recruiting control participants if cognitive tests are administered.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, with its impact on our way of life, is affecting our experiences and mental health. Notably, individuals with mental disorders have been reported to have a higher risk of contracting SARS-CoV-2. Personality traits could represent an important determinant of preventative health behaviour and, therefore, the risk of contracting the virus.
Aims
We examined overlapping genetic underpinnings between major psychiatric disorders, personality traits and susceptibility to SARS-CoV-2 infection.
Method
Linkage disequilibrium score regression was used to explore the genetic correlations of coronavirus disease 2019 (COVID-19) susceptibility with psychiatric disorders and personality traits based on data from the largest available respective genome-wide association studies (GWAS). In two cohorts (the PsyCourse (n = 1346) and the HeiDE (n = 3266) study), polygenic risk scores were used to analyse if a genetic association between, psychiatric disorders, personality traits and COVID-19 susceptibility exists in individual-level data.
Results
We observed no significant genetic correlations of COVID-19 susceptibility with psychiatric disorders. For personality traits, there was a significant genetic correlation for COVID-19 susceptibility with extraversion (P = 1.47 × 10−5; genetic correlation 0.284). Yet, this was not reflected in individual-level data from the PsyCourse and HeiDE studies.
Conclusions
We identified no significant correlation between genetic risk factors for severe psychiatric disorders and genetic risk for COVID-19 susceptibility. Among the personality traits, extraversion showed evidence for a positive genetic association with COVID-19 susceptibility, in one but not in another setting. Overall, these findings highlight a complex contribution of genetic and non-genetic components in the interaction between COVID-19 susceptibility and personality traits or mental disorders.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.