Snow avalanche simulation software is a commonly used tool for hazard estimation and mitigation planning. In this study a depth-averaged flow model, combining a simple entrainment and friction relation, is implemented in the software SamosAT. Computational results strongly depend on the simulation input, in particular on the employed model parameters. A long-standing problem is to quantify the influence of these parameters on the simulation results. We present a new multivariate optimization approach for avalanche simulation in three-dimensional terrain. The method takes into account the entire physically relevant range of the two friction parameters (Coulomb friction, turbulent drag) and one entrainment parameter. These three flow model parameters are scrutinized with respect to six optimization variables (runout, matched and exceeded affected area, maximum velocity, average deposition depth and mass growth). The approach is applied to a documented extreme avalanche event, recorded in St Anton, Austria. The final results provide adjusted parameter distributions optimizing the simulation–observation correspondence. At the same time, the degree of parameter–variable correspondence is determined. We show that the specification of optimal values for certain model parameters is near-impossible, if corresponding optimization variables are neglected or unavailable.