Wet snow avalanches in India are common during the mid- and late winter in the Pir Panjal Range (2000–3000ma.s.l.) and during the late winter in the Great Himalayan Range (3000 ma.s.l. and above). Although it is well known that the presence of liquid water in snow makes the flow behaviour of wet snow avalanches different from that of dry snow avalanches, there exist few actual flow measurements with wet snow. The aim of this investigation is to understand the dynamics of wet snow avalanches by conducting medium-scale experiments (volumes of 3, 6 and 11 m3) on the Dhundi snow chute in Himachal Pradesh, India. We measured flow velocities using video data, as well as optical velocity sensors installed on the side walls and running surface. Measurement results relating to the slip velocity of the front and tail of the moving snow mass, as well as the average slip velocity, are presented. In addition, we use the results of the vertical velocity profile measurements to calculate the effective viscosity of snow at two locations within the flow. We identified a shear thinning type of behaviour, suggesting that a single avalanche rheology cannot describe wet snow avalanche behaviour.