We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Today, there are an increasing number of procedures requiring moderate and deep sedation being performed outside the surgical suite. As a result, qualified non-anesthesia providers are administering varying levels of sedation to patients for a variety of diagnostic, therapeutic, and/or surgical procedures. Practitioners should provide patients with the benefits of sedation and/or analgesia while minimizing the associated risks. To do so, providers should understand the pharmacology of the agents being administered as well as the role of pharmacologic antagonists for opioids and benzodiazepines. Today’s practitioners are equipped with an abundance of versatile sedative agents that can be used alone and in combination. Furthermore, combinations of sedative and analgesics should be administered as appropriate for the procedure being performed and the condition of the patient. Policies and standards regarding administration of sedation and analgesia by non-anesthesia providers are addressed elsewhere in the book. This chapter focuses on the pharmacology of the drugs most used to provide moderate and deep sedation and their available reversal agents.
This chapter focuses on the pharmacology of the drugs commonly used to provide moderate and deep sedation and their available reversal agents. Intravenous sedative and analgesic drugs should be given in small, incremental doses titrated to desired end points of sedation and analgesia, with adequate time allowed between doses to achieve those effects. Preemptive analgesia is a treatment that is initiated before surgical procedure to reduce sensitization of pain pathways. Potential drug interactions require the clinician providing sedation to be cognizant of potential drug-drug effects, which can lead to morbidity and mortality. Opioids in combination with benzodiazepines provide adequate moderate and/or deep sedation and analgesia for many potentially painful procedures. Other drugs used for deep sedation include propofol, ketamine, dexmedetomidine, and etomidate. Local anesthetics (LA) have the potential to produce deleterious side effects. The choice of a local anesthetic and care in its use are the primary determinants of toxicity.
The Burkholderia cepacia complex is associated with colonization or disease in patients with cystic fibrosis (CF). For patients without CF, this complex is poorly understood apart from its presence in occasional point source outbreaks.
Objective.
To investigate risk factors for B. cepacia bacteremia in hospitalized, intensive care unit patients without CF.
Methods.
We identified patients with 1 or more blood cultures positive for B. cepacia between May 1, 1996, and March 31, 2002, excluding those with CF. Control patients were matched to case patients by ward, duration of hospitalization, and onset date of bacteremia. Matched analyses were used to identify risk factors for B. cepacia bacteremia.
Results.
We enrolled 40 patients with B. cepacia bacteremia into the study. No environmental or other point source for B. cepacia complex was identified, although horizontal spread was suspected. Implementation of contact precautions was effective in decreasing the incidence of B. cepacia bacteremia. We selected 119 matched controls. Age, sex, and race were similar between cases and controls. In multivariable analysis, renal failure that required dialysis, recent abdominal surgery, 2 or more bronchoscopic procedures before detection of B. cepacia bacteremia, tracheostomy, and presence of a central line before detection of B. cepacia bacteremia were independently associated with development of B. cepacia bacteremia, whereas presence of a percutaneous feeding tube was associated with a lower risk of disease.
Conclusions.
B. cepacia complex is an important emerging group of nosocomial pathogens in patients with and patients without CF. Nosocomial spread is likely facilitated by cross-transmission, frequent pulmonary procedures, and central venous access. Infection control measures appear useful for limiting the spread of virulent, transmissible clones of B. cepacia complex.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.