We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Stomach contents analysis and stable isotope results indicate M. hubbsi is a generalist predator that feeds mainly on demersal fishes, followed by crustaceans and cephalopods. Ontogenetic changes in diet were identified, with fish importance increasing in the diet with hake size. Smaller hake (<250 mm) fed mostly on the sepiolid Semirossia tenera (89.45%IRI) and engraulid fish (89.96%IRI). Mid-sized hake (250–300 mm) fed mainly on benthic fish such as Bellator brachychir (95.63%IRI) and euphausiids (56.46%IRI), while larger hake (>300 mm) fed heavily on Dactylopterus volitans (94.80%IRI) and occasionally on a variety of teleosts. Significant correlations between δ13C (P < 0.05), THg (P < 0.001) and hake size occurred, whereas no relationship was observed between δ15N and hake size or δ15N and total mercury. Signatures were lowest in smaller hake with a tendency of increasing with size. Smaller and larger hake were significantly different in δ13C. Differences regarding isotopic niche width were quantified for each size group; trophic diversity and trophic redundancy among them were negligible, but hake >300 mm possibly have a larger feeding plasticity due to the combination of prey from a wide trophic level range.
OBJECTIVES/SPECIFIC AIMS: Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) skin and soft tissue infections (SSTIs) recurrence ranges from 16% to 43% and presents significant challenges to clinicians, patients, and families. This comparative effectiveness research study aims to disseminate, implement and evaluate whether an existing intervention, consisting of decolonization and decontamination procedures, which has been determined to be effective in hospital intensive care unit settings, can be implemented by Community Health Workers (CHWs) or “promotoras” conducting home visits prevent recurrence of CA-MRSA and transmission within their households for patients presenting to primary care with SSTIs. METHODS/STUDY POPULATION: In partnership with 3 Community Health Centers and 4 community hospitals in NYC, this study will recruit patients (n=278) with confirmed MRSA SSTIs and their household members. Participants are randomized to receive either a CHW/Promotora-delivered decolonization-decontamination intervention or usual care, which includes hygiene education. The highly engaged stakeholder team meets monthly to review interim results, identify areas for refinement and new research questions, and develop and implement strategies to improve participant engagement and retention. RESULTS/ANTICIPATED RESULTS: MRSA and MSSA were found in 19% and 21.1% of wound cultures, respectively. 59.5% with MRSA+ wound culture had one or more MRSA+ surveillance culture; 67.8% with MSSA+ wound culture had one or more MSSA+ surveillance culture. The “warm handoff” approach, developed and implemented by the stakeholder team to engage patients from their initial consent to return of lab results and scheduling of the home visits, helped improve completion of baseline home visits by 14%, from 45% to 59% of eligible participants. Home visits have demonstrated that 60% of households had at least one surface contaminated with S. aureus. Of the surfaces that tested positive in the households, nearly 20% were MRSA and 81% were MSSA; 32.5% of household members had at least one surveillance culture positive for S. aureus (MRSA: 7.7%, MSSA: 92.3%). DISCUSSION/SIGNIFICANCE OF IMPACT: This study aims to understand the systems-level, patient-level, and environmental-level factors associated with SSTI recurrence and household transmission, and to examine the interactions between bacterial genotypic and clinical/phenotypic factors on decontamination, decolonization, SSTI recurrence and household transmission. This study will evaluate the barriers and facilitators of implementation of home visits by CHWs in underserved populations, and aims to strengthen the weak evidence base for implementation of strategies to reduce SSTI recurrence and household transmission.
Previous studies have examined associations of cardiometabolic factors with depression and cognition separately.
Aims
To determine if depressive symptoms mediate the association between cardiometabolic factors and cognitive decline in two community studies.
Method
Data for the analyses were drawn from the Rotterdam Study, the Netherlands (n = 2940) and the Whitehall II study, UK (n = 4469).
Results
Mediation analyses suggested a direct association between cardiometabolic factors and cognitive decline and an indirect association through depression: poorer cardiometabolic status at time 1 was associated with a higher level of depressive symptoms at time 2 (standardised regression coefficient 0.07 and 0.06, respectively), which, in turn, was associated with greater cognitive decline between time 2 and time 3 (standardised regression coefficient of −0.15 and −0.41, respectively).
Conclusions
Evidence from two independent cohort studies suggest an association between cardiometabolic dysregulation and cognitive decline and that depressive symptoms tend to precede this decline.
This work represents the first contribution for the application of the video image analysis (VIA) technology in predicting lean meat and fat composition in the equine species. Images of left sides of the carcass (n=42) were captured from the dorsal, lateral and medial views using a high-resolution digital camera. A total of 41 measurements (angles, lengths, widths and areas) were obtained by VIA. The variation of percentage of lean meat obtained from the forequarter (FQ) and hindquarter (HQ) carcass ranged between 5.86% and 7.83%. However, the percentage of fat (FAT) obtained from the FQ and HQ carcass presented a higher variation (CV between 41.34% and 44.58%). By combining different measurements and using prediction models with cold carcass weight (CCW) and VIA measurement the coefficient of determination (k-fold-R2) were 0.458 and 0.532 for FQ and HQ, respectively. On the other hand, employing the most comprehensive model (CCW plus all VIA measurements), the k-fold-R2 increased from 0.494 to 0.887 and 0.513 to 0.878 with respect to the simplest model (only with CCW), while precision increased with the reduction in the root mean square error (2.958 to 0.947 and 1.841 to 0.787) for the hindquarter fat and lean percentage, respectively. With CCW plus VIA measurements is possible to explain the wholesale value cuts yield variation (k-fold-R2 between 0.533 and 0.889). Overall, the VIA technology performed in the present study could be considered as an accurate method to assess the horse carcass composition which could have a role in breeding programmes and research studies to assist in the development of a value-based marketing system for horse carcass.
Intrauterine growth restriction (IUGR) can induce deleterious changes in the modulatory ability of the vascular endothelium, contributing to an increased risk of developing cardiovascular diseases in the long term. However, the mechanisms involved are not fully understood. Emerging evidence has suggested the potential role of endothelial progenitor cells (EPCs) in vascular health and repair. Therefore, we aimed to evaluate the effects of IUGR on vascular reactivity and EPCs derived from the peripheral blood (PB) and bone marrow (BM) in vitro. Pregnant Wistar rats were fed an ad libitum diet (control group) or 50% of the ad libitum diet (restricted group) throughout gestation. We determined vascular reactivity, nitric oxide (NO) concentration, and endothelial nitric oxide synthase (eNOS) protein expression by evaluating the thoracic aorta of adult male offspring from both groups (aged: 19–20 weeks). Moreover, the amount, functional capacity, and senescence of EPCs were assessed in vitro. Our results indicated that IUGR reduced vasodilation via acetylcholine in aorta rings, decreased NO levels, and increased eNOS phosphorylation at Thr495. The amount of EPCs was similar between both groups; however, IUGR decreased the functional capacity of EPCs from the PB and BM. Furthermore, the senescence process was accelerated in BM-derived EPCs from IUGR rats. In summary, our findings demonstrated the deleterious changes in EPCs from IUGR rats, such as reduced EPC function and accelerated senescence in vitro. These findings may contribute towards elucidating the possible mechanisms involved in endothelial dysfunction induced by fetal programming.
It has been demonstrated that intrauterine growth restriction (IUGR) can program increase cardiometabolic risk. There are also evidences of the correlation between IUGR with low-grade inflammation and, thus can contribute to development of several cardiometabolic comorbidities. Therefore, we investigated the influence of IUGR on circulating mitochondrial DNA (mtDNA)/Toll-like receptor 9 (TLR9) and TNF-α expression in adult offspring. Considering that the aerobic training has anti-inflammatory actions, we also investigated whether aerobic training would improve these inflammatory factors. Pregnant Wistar rats received ad libitum or 50% of ad libitum diet throughout gestation. At 8 weeks of age, male offspring from both groups were randomly assigned to control, trained control, restricted and trained restricted. Aerobic training protocol was performed on a treadmill and after that, we evaluated circulating mtDNA, cardiac protein expression of TLR9, plasma and cardiac TNF-α levels, and left ventricle (LV) mass. We found that IUGR promoted an increase in the circulating mtDNA, TLR9 expression and plasma TNF-α levels. Further, our results revealed that aerobic training can restore mtDNA/TLR9 content and plasma levels of TNF-α among restricted rats. The cardiac TNF-α content and LV mass were not influenced either by IUGR or aerobic training. In conclusion, IUGR can program mtDNA/TLR9 content, which may lead to high levels of TNF-α. However, aerobic training was able to normalize these alterations. These findings evidenced that the association of IUGR and aerobic training seems to exert an important interaction effect regarding pro-inflammatory condition and, aerobic training may be used as a strategy to reduce deleterious adaptations in IUGR offspring.
The genus Prymnesium includes several species that produce toxins with cytotoxic, ichthyotoxic, neurotoxic and haemolytic activity. Bloom episodes of Prymnesium species have been reported from several parts of the world (North America, Europe, Africa, Asia and Australia), especially from temperate and subtropical regions and most of them from brackish waters. Blooms cause great economic losses to aquaculture and fisheries around the world. The ichthyotoxic and allelopathic effects of Prymnesium have been linked to the presence of Haemolysin 1, Prymnesins 1 and 2 and, more recently, fatty acids and fatty acid amides. The toxicology of this genus with regard to different growth conditions such as light, nutrients and other parameters has been well documented. It is unknown, however, whether different species and strains from the Prymnesium genus all produce the same types and level of toxins. In this study, we have determined the haemolytic activity of eight different strains from the genus Prymnesium in both exponential and stationary phases of growth. We have also evaluated the efficiency of the extraction solvent.
The dune of Oitavos, the underlying paleosol, and Helix sp. gastropod shells found within the paleosol were dated using a combination of radiocarbon and blue optically stimulated luminescence (OSL). The organic component of the paleosol produced a significantly older age (∼20,000 cal BP) than the OSL age measurement (∼15,000 yr), while 14C age measurements on the inorganic component and the gastropods produced ages of ∼35,000 yr and ∼34,000 yr, respectively. Rare-earth element analyses provide evidence that the gastropods incorporate geological carbonate, making them an unreliable indicator of the age of the paleosol. We propose that the 14C age of the small organic component of the paleosol is also likely to be unreliable due to incorporation of residual material. The OSL age measurement of the upper paleosol (∼15,000 yr) is consistent with the age for the base of the dune (∼14,500 yr). The younger OSL age for the top of the dune (∼12,000 yr) suggests that it was built up by at least 2 sand pulses or that there was a remobilization of material at the top during its evolution, prior to consolidation.
We present a review of our recent studies of Bias Temperature Instability (BTI) in Metal-Oxide-Semiconductor Field-Effect-Transistors (MOSFETs) fabricated with different material systems, highlighting the reliability opportunities and challenges of each novel device family. We discuss first the intrinsic reliability improvement offered by SiGe and Ge p-channel technologies, if a Si cap is used to passivate the channel, in order to fabricate a standard SiO2/HfO2 gate stack. We focus on SiGe gate stack optimizations for maximum BTI reliability, and on a simple physics-based model able to reproduce the experimental trends. This model framework is then used to understand the suboptimal BTI reliability and excessive time-dependent variability induced by oxide defect charging in different high-mobility channel gate stacks, such as Ge/GeOx/high-k and InGaAs/high-k. Finally we discuss how to pursue a reduction of charge trapping in alternative material systems in order to boost the device reliability and minimize time-dependent variability.
The aim of this study was to determine the seroprevalence of Toxoplasma gondii infection in free-range chickens from Uberlândia, Minas Gerais state, Brazil, and characterize the genotypic and phenotypic features of two isolates of this parasite, considering the importance of these hosts in the epidemiology of toxoplasmosis. Serum samples from 108 free-range chickens were obtained from ten different districts, and submitted to the modified agglutination test (MAT) for the presence of anti-T. gondii antibodies, and brain and heart tissue samples from infected chickens were processed for mouse bioassay. An overall seroprevalence of 71·3% was found and antibody titres ranged from 16 to 4096. After confirmation of seropositivity by mouse bioassay, the determination of the T. gondii genotypes of two isolates was performed by PCR–RFLP, using primers for the following markers: SAG1, SAG2, SAG3, BTUB, GRA6, c22–8, c29–2, L358, PK1, new SAG2, Apico and CS3. These T. gondii isolates, designated TgChBrUD1and TgChBrUD2, were obtained from heart samples of free-range chickens. The TgChBrUD1 isolate belonged to ToxoDB PCR–RFLP genotype 11 and the TgChBrUD2 isolate belonged to ToxoDB PCR–RFLP genotype 6. Both isolates demonstrated high virulence in a rodent model, with the TgChBrUD1 isolate able to induce brain cysts, in accord with its pattern of multiplication rates in human fibroblast culture. Taken together, these results reveal high prevalence of T. gondii infection in free-range chickens throughout Uberlândia, indicating an important degree of oocyst environmental contamination and the existence of considerable risk for T. gondii transmission to humans by consumption of free-range chicken as a food source.
Studies regarding stigma towards mental illness in Argentina blossomed after the first National Mental Health Law was passed in 2010. Methodological limitations and contradictory results regarding community perceptions of stigma hinder comparisons across domestic and international contexts but some lessons may still be gleaned. We examine this research and derive recommendations for future research and actions to reduce stigma. These include tackling culture-specific aspects of stigma, increasing education of the general population, making more community-based services available and exposing mental health professionals to people with mental illness who are on community paths to recovery.
The present study determined the mineralogy and thermal properties of kaolin from Acoculco (Puebla), at the eastern Trans-Mexican Volcanic Belt and compared it with the nearby deposits of Agua Blanca (Hidalgo) and Huayacocotla (Veracruz). The mineralogy of the kaolins was determined by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Thermal behaviour was studied by differential thermal analysis, dilatometry and hot-stage microscopy. The Acoculco deposit is composed mainly of kaolinite and SiO2 minerals. In the case of Agua Blanca and Huayacocotla, alunite is abundant in places and minor anatase is also present locally. The Acoculco kaolins are Fe-poor and relatively rich in some potentially toxic elements (Zr, Sb, Pb). They undergo a relatively small amount of shrinkage (∼3–4 vol.%), during firing at 20–1300°C and cooling down to 20°C, except when >10 wt.% alunite is present. These kaolins are a suitable raw material for the ceramics industry. Other applications (pharmaceuticals, cosmetics) would require an enrichment process to eliminate impurities such as Fe oxides.
This study aimed to evaluate the impact of vitrification on membrane lipid profile obtained by mass spectrometry (MS) of in vitro-produced bovine embryos. Matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS) has been used to obtain individual embryo membrane lipid profiles. Due to conditions of analysis, mainly membrane lipids, most favorably phosphatidylcholines (PCs) and sphingomyelins (SMs) have been detected. The following ions described by their mass-to-charge ratio (m/z) and respective attribution presented increased relative abundance (1.2–20×) in the vitrified group: 703.5 [SM (16:0) + H]+; 722.5 [PC (40:3) + Na]+; 758.5 [PC (34:2) + H]+; 762.5 [PC (34:0) + H]+; 790.5 [PC (36:0) + H]+ and 810.5 [PC (38:4) + H]+ and/or [PC (36:1) + Na]+. The ion with a m/z 744.5 [PCp (34:1) and/or PCe (34:2)] was 3.4-fold more abundant in the fresh group. Interestingly, ions with m/z 722.5 or 744.5 indicate the presence of lipid species, which are more resistant to enzymatic degradation as they contain fatty acyl residues linked through ether type bonds (alkyl ether or plasmalogens, indicated by the lowercase ‘e’ and ‘p‘, respectively) to the glycerol structure. The results indicate that cryopreservation impacts the membrane lipid profile, and that these alterations can be properly monitored by MALDI-MS. Membrane lipids can therefore be evaluated by MALDI-MS to monitor the effect of cryopreservation on membrane lipids, and to investigate changes in lipid profile that may reflect the metabolic response to the cryopreservation stress or changes in the environmental conditions.
Accurate knowledge of intra-specific diversity of underutilized crop species is a prerequisite for their genetic improvement and utilization. The diversity of 77 accessions of African yam bean (AYB, Sphenostylis stenocarpa) was assessed by amplified fragment length polymorphism (AFLP) markers. A total of EcoRI/MseI primer pairs were selected and 227 AFLP bands were generated, of which 59(26%) were found to be polymorphic in the 77 accessions of AYB. The most efficient primer combination for polymorphic detection was E-ACT/M-CAG with a polymorphic efficiency of 85.5%, while the least efficient was E-AGC/M-CAG with a polymorphic efficiency of 80.6%. The Jaccard genetic distance among the accessions of AYB ranged between 0.048 and 0.842 with a mean of 0.444. TSs98 and TSs104B were found to be the most similar accessions with a genetic similarity of 0.952. The neighbour-joining dendrogram grouped the 77 accessions of AYB into four distinct clusters comprising 8, 20, 21 and 28 accessions. The major clustering of the accessions was not related to their geographical origin. Cluster I was found to be the most diverse. The mean fixation index (0.203) and the mean expected heterozygosity (0.284) revealed a broad genetic base of the AYB accessions. The same germplasm set was previously evaluated for several agro-morphological traits. As the collection of additional AYB germplasm continues, the phenotypic profile, the clustering of the accessions and the AFLP primer combinations from this study can be used to augment breeding programmes.
Oligonychus punicae and Oligonychus perseae (Acari: Tetranychidae) are the most important mite species affecting avocado orchards in Mexico. Here we used nucleotide sequence data from segments of the nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and mitochondrial cytochrome oxidase subunit I (COI) genes to assess the phylogenetic relationships between both sympatric mite species and, using only ITS sequence data, examine genetic variation and population structure in both species, to test the hypothesis that, although both species co-occur, their genetic population structures are different in both Michoacan state (main producer) and Mexico state. Phylogenetic analysis showed a clear separation between both species using ITS and COI sequence information. Haplotype network analysis done on 24 samples of O. punicae revealed low genetic diversity with only three haplotypes found but a significant geographical population structure confirmed by analysis of molecular variance (AMOVA) and Kimura-2-parameter (K2P) analyses. In addition, a Mantel test revealed that geographical isolation was a factor responsible for the genetic differentiation. In contrast, analyses of 22 samples of O. perseae revealed high genetic diversity with 15 haplotypes found but no geographical structure confirmed by the AMOVA, K2P and Mantel test analyses. We have suggested that geographical separation is one of the most important factors driving genetic variation, but that it affected each species differently. The role of the ecology of these species on our results, and the importance of our findings in the development of monitoring and control strategies are discussed.
The influence of oxygenation in the magnetism, superconductivity and electronic states for the Mo0.3Cu0.7Sr2RECu2Oy (RE = Y, Er and Tm) compounds are discussed here. The magnetic measurements on the as-prepared (AP) samples suggest the existence of short-range magnetic correlations due to the presence of the paramagnetic MoV cations in the copper chain site. On the other hand, all the oxygenated samples are not magnetic but superconducting. The high pressure oxygenated sample shows the highest superconducting transition temperature of TC = 84 K. The influence of oxygenation in the electronic states for the Mo0.3Cu0.7Sr2YCu2Oy system associated with an oxidation reaction leading from a non-superconducting to a superconducting state has also been investigated by means of X-ray photoelectron spectroscopy (XPS). XPS measurements show the predominance of the MoV oxidation state over the MoVI one in the AP material; annealing under flowing oxygen enhances both the MoVI and CuII amounts. A detailed study of the electronic states for the Mo0.3Cu0.7Sr2YCu2Oy samples has been performed and is also discussed.
We report on the development of a plasmonic-photonic coupled platform based on a plasmonic periodic nanostructure and a host matrix for active media in the visible-near infrared range, constituted by a thin film of sol-gel glass. Here, we report on preliminary results about two main tasks of the research work. On one side, we have studied and optimized the surface that supports plasmonic resonances with tunable wavelengths. On the other side, we focused on improving the sol-gel techniques to form and deposit thin films appropriate for covering the previous surface as well as to protect it (i.e. for sensing applications), embed suitable fluorophores (for active device applications) while avoiding metal-induced radiative emission quenching. Besides structural and optical characterization of the considered structures and films, finite-difference time-domain numerical simulations have been performed, in order to give a feedback on the structure features and thereby interpret its optical response.
This trial was conducted to study the effect of livestock production system (freedom extensive system (FES) v. semi extensive system (SES)) and amount of finishing feed (1.5 v. 3.0 kg of commercial feed) in SES on carcass characteristics, meat quality and nutritional value of meat foal slaughtered at 18 months of age. For this study, a total of 49 foals (21 from FES and 28 from SES) were used. The obtained results showed that SES had a positive influence on carcass characteristic because these foals showed the best values for live weight, carcass weight, dressing percentage, perimeter of leg (PL) and carcass compactness index. On the other hand, finishing feeding also had a significant (P<0.05) effect on PL and lean thickness, as the highest values were obtained in foals finished with 3 kg of commercial fodder. The physico-chemical properties were significantly affected by the livestock production system with the exception of ashes content (P>0.05). Foals finished in SES increased in 408% the intramuscular fat content (0.23 v. 1.17%, for foals reared in FES and SES, respectively). On the other hand, L*-value and a*-value were significantly (P<0.01) affected by livestock production system, as foals from the FES group had a more intense redder color (higher CIE a*-value) and higher lightness (higher CIE L*-value) compared with those from the SES group. Finally, meat nutritional value was significantly affected by livestock production system, as foals from an extensive production system on wood pasture could be considered as healthier in relation to their fatty acid profiles (low n-6/n-3 ratio and high hypocholesterolemic/hypercholesterolemic ratio) as a result of the beneficial grass intake on meat fatty acid profile.
Impaired pancreatic β-cell function, as observed in the cases of early nutrition disturbance, is a major hallmark of metabolic diseases arising in adulthood. In the present study, we aimed to investigate the function/composition of the muscarinic acetylcholine receptor (mAChR) subtypes, M2 and M3, in the pancreatic islets of adult offspring of rats that were protein malnourished during lactation. Neonates were nursed by mothers that were fed either a low-protein (4 %, LP) or a normal-protein (23 %, NP) diet. Adult rats were pre-treated with anti-muscarinic drugs and subjected to the glucose tolerance test; the function and protein expression levels of M2mAChR and M3mAChR were determined. The LP rats were lean and hypoinsulinaemic. The selective M2mAChR antagonist methoctramine increased insulinaemia by 31 % in the NP rats and 155 % in the LP rats, and insulin secretion was increased by 32 % in the islets of the NP rats and 88 % in those of the LP rats. The selective M3mAChR antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide decreased insulinaemia by 63 % in the NP rats and 40 % in the LP rats and reduced insulin release by 41 % in the islets of the NP rats and 28 % in those of the LP rats. The protein expression levels of M2mAChR and M3mAChR were 57 % higher and 53 % lower, respectively, in the islets of the LP rats than in those of the NP rats. The expression and functional compositions of M2mAChR and M3mAChR were altered in the islets of the LP rats, as a result of metabolic programming caused by the protein-restricted diet, which might be another possible effect involved in the weak insulin secretion ability of the islets of the programmed adult rats.
Hydrogenated amorphous silicon betavoltaic devices are studied both by simulation and experimentally. Devices exhibiting a power density of 0.1 μW/cm2 upon Tritium exposure were fabricated. However, a significant degradation of the performance is taking place, especially during the first hours of the exposure. The degradation behavior differs from sample to sample as well as from published results in the literature. Comparisons with degradation from beta particles suggest an effect of tritium rather than a creation of defects by beta particles.