We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although the strong coupling of polarization to spontaneous strain in ferroelectrics would impart a flux-closure with severe disclination strains, recent studies have successfully stabilized such a domain via a nano-scaled multi-layer growth. Nonetheless, the detailed distributions of polarizations in three-dimensions (3D) and how the strains inside a flux closure affect the structures of domain walls are still less understood. Here we report a 3D polarization texture of a 4-fold flux closure domain identified in tensile strained ferroelectric PbTiO3/SrTiO3 multilayer films. Ferroelectric displacement analysis based on aberration-corrected scanning transmission electron microscopic imaging reveals highly inhomogeneous strains with strain gradient above 107/m. These giant disclination strains significantly broaden the 90° domain walls, while the flexoelectric coupling at 180° domain wall is less affected. The present observations are helpful for understanding the basics of topological dipole textures and indicate novel applications of ferroelectrics through engineering strains.
We have demonstrated electrostatic switching in vertically oriented nanotubes or nanofibers, where a nanoprobe was used as the actuating electrode inside an SEM. When the nanoprobe was manipulated to be in close proximity to a single tube, switching voltages between 10 V – 40 V were observed, depending on the geometrical parameters. The turn-on transitions appeared to be much sharper than the turn-off transitions which were limited by the tube-to-probe contact resistances. In many cases, stiction forces at these dimensions were dominant, since the tube appeared stuck to the probe even after the voltage returned to 0 V, suggesting that such structures are promising for nonvolatile memory applications. The stiction effects, to some extent, can be adjusted by engineering the switch geometry appropriately. Nanoscale mechanical measurements were also conducted on the tubes using a custom-built nanoindentor inside an SEM, from which preliminary material parameters, such as the elastic modulus, were extracted. The mechanical measurements also revealed that the tubes appear to be well adhered to the substrate. The material parameters gathered from the mechanical measurements were then used in developing an electrostatic model of the switch using a commercially available finite-element simulator. The calculated pull-in voltages appeared to be in agreement to the experimentally obtained switching voltages to first order.
The piezoelectric properties of PTO thin films grown by pulsed laser deposition are investigated with piezoresponse force microscopy and transmission electron microscopy. The as-grown films exhibit upward polarization, and inhomogeneous distribution of piezoelectric characteristics. The data obtained reveal imprint during piezoresponse force microscopy measurements, nonlinearity in the piezoelectric deformation, and limited retention loss. Moreover, transmission electron microscopy shows the presence of defects near the film/substrate interface, which can be associated with the variations of piezoelectric properties.
The recent reports on giant piezoresistance effect in highly resistive silicon nanowires (SiNWs) have offer greater sensitivity in stress measurements. Despite enhanced sensitivity, the piezoresistance of highly conductive silicon are preferred as they are less prone to thermal noises and hence better accuracy. Here we report a thermal induced buckle micro-bridge technique to accurately characterize the temperature dependent piezoresistivity effect in SiNWs. Phosphorus doped <110> SiNWs with 50 nm width, 95 nm thickness and 100 μm length were encapsulated within SiO2 micro-bridges. The electrical measurement of both reference SiNWs and SiNWs at micro-bridges was carried out, followed by the optical profiling of the micro-bridges with embedded SiNWs. N-type SiNWs with doping of 1×1020 ion/cm3 exhibit a strong dependence on temperature with a piezoresistive coefficient that decreases by 22.5 % between 25 oC to 60 oC; whereas its bulk counterpart is independent of temperature across this range. The results demonstrated that thermal noises may be more detrimental to nano-scale electromechanical sensors than its bulk counterparts.
Multi-wall carbon nanotubes (MWNT) have stable elastic properties over a wide range of deformation amplitudes and their high polarizability is conducive to efficient bending in the inhomogeneous electric field close to patterned electrodes. We simulate the static switching properties of the MWNT using a custom NEMS simulation package. The MWNT is modeled as a solid cylinder with Young�s modulus taken in a range consistent with recent experimental data in the literature. The polarizability of the MWNT is obtained from empirical expressions in the literature. The static equilibrium equations for the bending of the MWNT in an electric field are solved for realistic geometry of the electrodes. The spatial distribution of electric field distribution in the vicinity of the tubes and the electrodes is obtained from a finite element solution of the Poisson equation. A Monte Carlo approach yields the switching voltage as a function of MWNT mechanical properties and electrode geometry, where a Gaussian distribution is assumed for the parametric variations.
The mammalian inner ear is remarkably sensitive to quiet sounds, exhibits over 100dB dynamic range, and has the exquisite ability to discriminate closely spaced tones even in the presence of noise. This performance is achieved, in part, through active mechanical amplification of vibrations by sensory hair cells within the inner ear. All hair cells are endowed with a bundle of motile microvilli, stereocilia, located at the apical end of the cell, and the more specialized outer hair cells (OHC's) are also endowed with somatic electromotility responsible for changes in cell length in response to perturbations in membrane potential. Both hair bundle and somatic motors are known to feed energy into the mechanical vibrations in the inner ear. The biophysical origin and relative significance of the motors remains a subject of intense research. Several biological motors have been identified in hair cells that might underlie the motor(s), including a cousin of the classical ATP driven actin-myosin motor found in skeletal muscle. Hydrolysis of ATP, however, is much too slow to be viable at audio frequencies on a cycle-by-cycle basis. Heuristically, the OHC somatic motor behaves as if the OHC lateral wall membrane were a piezoelectric material and the hair bundle motor behaves as if the plasma membrane were a flexoelectric material. We propose these observations from a continuum materials perspective are literally true. To examine this idea, we formulated mathematical models of the OHC lateral wall “piezoelectric” motor and the more ubiquitous “flexoelectric” hair bundle motor. Plausible biophysical mechanisms underlying piezo- and flexoelectircity were established. Model predictions were compared extensively to the available data. The models were then applied to study the power conversion efficiency of the motors. Results show that the material properties of the complex membranes in hair cells provide them with the ability to convert electrical power available in the inner ear cochlea into useful mechanical amplification of sound induced vibrations at auditory frequencies. We also examined how hair cell amplification might be controlled by the brain through efferent synaptic contacts on hair cells and found a simple mechanism to tune hearing to signals of interest to the listener by electrical control of these motors.