We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Health and Family Welfare Department of the Government of Gujarat is implementing a program called Technology for Community Health Operation (TeCHO+) to address the state's priority health issues. This paper details the protocol for using health technology assessment to assess the impact of the TeCHO+ program on data quality, service delivery coverage, rates of morbidity and mortality, and cost effectiveness.
Methods
This mixed-method study will be conducted in five districts. Data will be validated in a phased manner over a three-year period, along with an assessment of key outcome indicators. Additionally, key informant interviews will be conducted and cost data will be gathered.
Results
Early implementation of TeCHO+ has highlighted mixed impact at an operational level, with gaps in implementation. Despite some gaps in the available evidence, TeCHO+ solutions can significantly improve health service delivery through increased accuracy of data management, high-risk identification, and quality and accessibility of care. However, implementation challenges require even greater efforts to establish comprehensive systems for troubleshooting and corrective measures for improving data quality. Positive experiences encourage grassroots teams for continuing the use of TeCHO+.
Conclusions
TeCHO+ is expected to improve service coverage and reduce rates of morbidity and mortality by improving the population's nutritional status, the timeliness of care for high-risk cases, and the non-communicable disease profile of the community.
Semiconducting nanostructures such as nanowires (NWs) have been used as building blocks for various types of sensors, energy storage and generation devices, electronic devices and for new manufacturing methods involving printed NWs. The response of these sensing/energy/electronic components and the new fabrication methods depends very much on the quality of NWs and for this reason it is important to understand the growth mechanism of 1D semiconducting nanostructures. This is also important to understand the compatibility of NW growth steps and tools used in the process with these unconventional substrates such as plastic that are used in flexible and large area electronics. Therefore, this Element presents at length discussion about the growth mechanisms, growth conditions and the tools used for the synthesis of NWs. Although NWs from Si, ZnO and carbon nanotubes (CNTs) are included, the discussion is generic and relevant to several other types of NWs as well as heterostructures.
Advanced nanostructured materials such as organic and inorganic micro/nanostructures are excellent building blocks for electronics, optoelectronics, sensing, and photovoltaics because of their high-crystallinity, long aspect-ratio, high surface-to-volume ratio, and low dimensionality. However, their assembly over large areas and integration in functional circuits are a matter of intensive investigation. This Element provides detailed description of various technologies to realize micro/nanostructures based large-area electronics (LAE) devices on rigid or flexible/stretchable substrates. The first section of this Element provides an introduction to the state-of-the-art integration techniques used to fabricate LAE devices based on different kind of micro/nanostructures. The second section describes inorganic and organic micro/nanostructures, including most common and promising synthesis procedures. In the third section,different techniques are explained that have great potential for integration of micro/nanostructures over large areas. Finally, the fourth section summarizes important remarks about LAE devices based on micro/nanostructures, and future directions.
Avian tuberculosis is a chronic infectious disease caused by M. avium including four subspecies Mycobacterium avium subspecies avium; M. avium hominissuis; M. avium paratuberculosis; M. avium silvaticum. This disease is characterised by the formation of granulomatous lesions in viscera, a progressive weight loss and death. It can be transmitted to healthy birds in the flock, and occasionally to human beings. It is important to diagnose avian tuberculosis in order to prevent the spread of infection and epidemiology. This paper reviews the available techniques for the diagnosis of avian tuberculosis along with their pros and cons. The main problem in diagnosis is poor availability of samples due to infrequent shedding in faeces, pattern and colour of feathers, wattle and comb and lack of specific signs and symptoms. Any single technique is not effective in diagnosing the disease due to the lack of required sensitivity and specificity. Application of two or more techniques is not a feasible option in developing countries due to financial constraints. In the short term, more research is needed to develop multidisciplinary approaches which can help fully understand the aetiology and epidemiology of disease.
Most people are impressed, if not amazed, at the fantastic progress in the
biomedical field, which barely existed 50 years ago. There have been giant
leaps not just in the manner in which technology is being used to treat
patients, but also in the way the electronics and sensors have diffused into
society and resulted in paradigm shifts in health monitoring. Electronic
microsystems can now be ingested (e.g. swallowable capsules) to explore the
gastrointestinal tract and can transmit the acquired information to a base
station [1]. The march of electronic technologies to the atomic scale and to
non-planarity (i.e. three dimensions), and rapid advances in system, cell,
and molecular biology will forge an increased synergy between electronics
and biology, and we can see more exciting opportunities in the near future.
For example, in the next decade it may become possible to restore vision or
reverse the effects of spinal cord injury or disease, or for a lab-on-a-chip
to allow medical diagnoses without a clinic, or instantaneous biological
agent detection. Some of these fields are discussed in detail in other
chapters of this book. Similarly, we may see new ways of recording neural
signals or brain–machine interfaces if the electronics could become
ultra-thin, bendable, and stretchable, and thus integrate intimately with
the soft, curvilinear surfaces of biological tissues. Some of these
developments are discussed in Chapters 22–27. Recent results in this
direction are encouraging and make it a real possibility in the near future
[2,3]. This chapter is about this key enabler, i.e. epidermal electronics,
which will lead to further convergence of biology and electronics. The term
epidermal electronics here also refers to electronic skin or e-skin (Figure
19.1), which is an ultra-thin and lightweight structure with electronic
and/or sensing components on flexible/bendable substrates.
Ion acceleration from submicron thick foil target irradiated by a circularly polarized laser is studied using multidimensional particle-in-cell simulations. Convex, flat, and concave target shapes are considered. Radius of curvature of curved target is of the order of laser width in transverse direction. Accelerated ion beam of highest peak energy and least energy spread is obtained from concave target, whereas total accelerated charge is highest in convex target. It is attributed to the change in the growth of transverse instabilities and geometrical effects due to target curvature in initial stages of acceleration process. The variation in the radius of curvature of the foil depends on the ratio of initial spot size to the radius of curvature. Faster reduction in curvature is achieved for tightly focused Gaussian pulses as conjectured by the model.
The bubble regime acceleration of electrons by a short pulse laser in a carbon nanotube (CNT) embedded plasma is investigated, employing two-dimensional Particle-in-Cell simulations. The laser converts the CNT placed on the laser axis into dense plasma and expels the electrons out, to form a co-moving positive charged sheet inside the bubble. The additional field generated due to sheet enhances the energy of the monoenergetic bunch by about 5% and their number by 5–20%. For a typical 40 fs, 7.5 × 1019 Wcm−2 pulse in an underdense plasma of density n0, CNT of thickness 25 nm and electron density 30n0, produces a monoenergetic bunch of 115 MeV with 5% energy spread. When CNT density is raised to 90n0, the energy gain, energy spread and accelerated charge increases further. The analytical framework supports these features.
Fusarium wilt caused by Fusarium oxysporum, Schlecht. emend. Snyd. & Hans. f. sp. ciceri is prevalent in most chickpea-growing countries and is a major devastating disease. Host plant resistance is the most practical method of disease management. Indigenous chickpea germplasm reveals a heterogeneous genetic make-up and the response of resistance to wilt is an unexplored potential source for disease resistance. There are 70 indigenous germplasm lines selected on the basis of their agronomic performance and diverse areas of collections in the country. Of these, four accessions had a highly resistant score of 1 and six had a score of 3 using a 1–9 rating scale, indicating their level of resistance to Fusarium wilt (race 4). Other germplasm accessions of chickpea were found to be moderately resistant to highly susceptible disease reaction. Likewise, the same set of germplasm was also screened for Meloidogyne incognita (race 1) using pot culture under controlled condition. Only one accession was found to be resistant to this pest. These resistant gene sources can be utilised effectively for race-specific chickpea wilt and root-knot resistance breeding programmes.
The problem of propagation of an ion-acoustic soliton and its reflection in a weakly inhomogeneous plasma is considered, taking into account the effect of finite ion temperature. A reductive perturbation analysis is carried out to obtain expressions for the local speed, amplitude and width of the soliton. The peak value of the soliton amplitude increases and the soliton width decreases with increasing ion temperature. An equation describing the dependence of the reflected-wave amplitude on ion temperature is obtained. The amplitude of the reflected wave is observed to decrease with increasing ion temperature on account of Landau damping.
Speaking on ‘The Future of Indian Cities: National Issues and Goals’ at a 1960 conference organised by the University of California at Berkeley, Asoka Mehta, then a Member of Parliament, noted:
Whether we think of patchwork improvement, of reorganisation of the cities that would involve displacement of some people and their moving to other areas, or of planning for future growth, it is patent that without widespread understanding of these objectives and the enlistment of popular interests – and, where possible, active cooperation – the major tasks will remain undone, or will be done badly. The governments and civic authorities have to discover methods of contacting, informing, and interesting citizens in the plans of change and development. A network of local organisations, neighborhood groups, and citizens' forums will have to complement a carefully thought-out program of public relations.
Since then, India has witnessed wide-scale urbanisation. The urban population has grown from 61.6 million in 1951 to 285.3 million in 2001. The proportion of the urban population to total population has risen from 17.6 per cent to 27.8 per cent during the same period, and the number of urban centres has increased from 2,795 to 5,161. The populations of large cities like Kolkata and Mumbai top 10 million. Indeed, the size of the urban population of India is more than the total population of the United States. According to United Nations' estimates, India will have an urbanisation level of 40.9 per cent in the year 2030.
The performance of newly developed extra-short-duration pigeonpea (Cajanus cajan) genotypes and traditional short-duration pigeonpea cultivars was compared in rotation with wheat in on-farm trials conducted in 1996–97 and 1997–98 in Sonepat (28° N) district in Haryana, and in 1996–97 at Ludhiana (30° N) district in Punjab, India. At both locations, a wheat crop (Triticum aestivum cv. HD 2329) followed pigeonpea. At Sonepat, an indeterminate extra-short-duration genotype ICPL 88039 matured up to three weeks earlier, yet gave 12% higher yield (1.57 t ha−1) and showed less susceptibility to borer damage than did the short-duration cv. Manak. At Ludhiana, extra-short-duration pigeonpea genotypes, ICPL 88039, ICPL 85010 and AL 201 gave similar grain yields to the short-duration T 21 in spite of maturing three to four weeks earlier. Yields of wheat crops following extra-short-duration genotypes were up to 0.75 t ha−1 greater at Sonepat and up to 1.0 t ha−1 greater at Ludhiana. The results of the study provide empirical evidence that extra-short-duration pigeonpea genotypes could contribute to higher productivity of pigeonpea–wheat rotation systems. Most of the farmers who grew on-farm trials in Sonepat preferred extra-short-duration to short-duration pigeonpea types for their early maturity, bold seed size, and the greater yield of the following wheat crop.
Statistical equations were derived for estimating three soil moisture constants, i.e. field capacity (FC), wilting point (WP) and available water capacity (AWC), from soil saturation percentage (SP), which is an easily determinable parameter. The regression equations were evaluated from a data set obtained on 438 soil samples collected from different horizons of 111 profiles of the Indogangetic Plains in northern India, having a wide variation of texture and other physico-chemical properties. The three soil moisture constants were positively correlated with logarithms of SP (r = 0·985 for FC v. In SP, 0·979 for WP v. In SP, and 0·914 for AWC v. In SP). The regression equations were thetested on an independent set of experimental data on 57 samples collected from 14 representative soil profiles of the study area. Values of the three moisture constants of this data set, predicted from the regression equations, were in exceptionally good agreement with the observed values. The mean estimation error (the error of the estimated value relative to the measured value) was only 0·55% for FC, 0·12% for WP and 0·67% for AWC.
In a 2-year field study, all the maize cultivars tried (Partap-1 Ageti-76, Ganga-5 and DHM-103) produced similar length of ears and equivalent grain yields. However, Partap-1 and Ganga-5 produced greater 100-kernel weight and greater grain yield per ear but fewer ears per hectare than Ageti-76 and DHM-103. The yield attributes and grain yields of maize sown on 19 December, 29 December and 8 January were identical and were superior to those of the 19 January sowing. Maize sown on 19 December, 29 December and 8 January exhibited longer ears, more ears and fully developed kernels and thereby produced greater grain yields than the 18 January sowing.
During 1983–4, in the 19 December and 29 December sowings all the cultivars gave identical grain yields. In the 8 January sowing Partap-1 and Ageti-76 produced similar yields and proved better than Ganga-5 and DHM-103. In the 18 January sowing Ageti-76, Ganga-5 and DHM-103 yielded more than Partap-1.
Desodification of a highly saline-sodic, permeable, sandy loam soil was accomplished in 2 × 2 m (S1), 4 × 4 m (S2) and 6 × 6 m (S3) plots under continuous and intermittent ponding. The soil contained large amounts of soluble salts and exchangeable sodium throughout the profile to the water table. The chief salts were chlorides and sulphates of sodium, calcium, and magnesium. The leaching curves with respect to desodification did not differ significantly between the S1, S2 and S3 plots under continuous ponding but did under intermittent ponding. With intermittent ponding, the efficiency of leaching exchangeable sodium in the S1 plots was very significantly higher than that in the S2 and S3 plots, i.e. the leaching efficiency decreased sharply with increased plot size. The leaching efficiency in the S1 plots was significantly greater with intermittent than with continuous ponding, but the reverse was true in the S2 and S3 plots. The results further indicated that there is no need to apply an amendment such as gypsum, mainly because calcium and magnesium present in such soils are adequate to replace the initially high exchangeable sodium during leaching. The displacement of exchangeable sodium in the S1 plots under intermittent ponding was nearly piston-like. With increased plot size, it tended to deviate from this behaviour. It is concluded that under practical situations in which reclamation is accomplished in large plots, the practice of leaching the saline constituents with intermittent ponding would be less effective. Thus, leaching of salts down into the soil with a single heavy irrigation would be more desirable.
Leaching in a salt-affected, permeable, sandy loam soil was evaluated under continuous and intermittent ponding conditions in 2 × 2 m (S1), 4 × 4 m (S2) and 6 × 6 m (S3) plots. The soil contained large amounts of soluble salts throughout the profile to the water table, chiefly chlorides and sulphates of sodium, calcium and magnesium. The leaching curves did not differ significantly between Slf Sa and S3 plots under continuous ponding but did under intermittent ponding. The leaching efficiency decreased sharply with increased plot size. The leaching efficiency in Sj plots was significantly greater with intermittent than with continuous ponding, but the reverse was true in S3 plots. The displacement of the resident soil solution in S1 plots under intermittent ponding was nearly piston-like. With increased plot size, it tended to deviate from this behaviour. The leaching curves from S3 plots (this size being reasonable in farmers' fields) were compared with those obtained from numerical solution of a simplified steady-state salt transport model. The model also included a source term, solubility rate constant, for the slightly soluble salts present in the experimental soil. The pore water velocity was estimated from field capacity and time-averaged infiltration rate. The effective dispersion coefficient and solubility rate constant were estimated by a least-squares minimization technique. A reasonably good agreement was obtained between simulated and experimental leaching curves. For practical purposes, this simple model may be adequate to predict leaching in salt-affected soils similar to the one under consideration.
Wheat (Triticum aestivum), mustard (Brassica juncea), gram (Cicer arietinum) and barley (Hordeum vulgare) seedlings were raised in soils of different tilth created in microplots during 1981 and 1982. Amplitude in diurnal seed-zone temperature and soil moisture content increased with tilth coarseness. At low soil moisture levels, seedling emergence of wheat and mustard decreased with increasing clod size while that of gram and barley increased. These effects were not significant at high soil moisture levels. Shoot growth of all the crops was higher under coarse tilth than under fine tilth at both moisture levels. Root growth of wheat and mustard decreased with increasing clod size while that of gram and barley increased, at both moisture levels. Mustard had the highest seedling emergence at the low moisture level. Seedling emergence and shoot growth were higher under high moisture than under low moisture for all crops. Root growth varied depending upon the type of crop.
The data obtained from 360 progeny families produced by crossing 40 F2 plants from each of three wheat crosses HD 2009 × HD 1949, Raj 821 × WH 147 and NP 876 × HD 1949, to three testers (the testers being the two parents of each original cross and their F1 in each case) were subjected to triple test cross analysis for detecting and estimating additive, dominance and epistatic components of genetic variation and interaction of these components with environment for plant height, spike length, number of tillers per plant, number of spikelets per spike, number of grains per spike, 1000-grain weight, number of days from sowing to heading and to maturity, grain yield per plant and grain yield/above ground dry matter ratio (harvest index). Epistasis was an important element for plant height, number of tillers per plant, number of grains per spike and grain yield per plant in all three crosses. Both the i type and j and l type epistasis were equally important. In general, the magnitude of additive component was larger than that of dominance component. The additive gene effects were more sensitive to environmental change than the dominance gene effects. Similarly, j and l type epistasis was relatively more sensitive to environment than the i type epistasis.