We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Antibiotic overuse is common in outpatient pediatrics and varies across clinical setting and clinician type. We sought to identify social, behavioral, and environmental drivers of outpatient antibiotic prescribing for pediatric patients.
Methods:
We conducted semistructured interviews with physicians and advanced practice providers (APPs) across diverse outpatient settings including pediatric primary, urgent, and retail care. We used the grounded theory constant comparative method and a thematic approach to analysis. We developed a conceptual model, building on domains of continuity to map common themes and their relationships within the healthcare system.
Results:
We interviewed 55 physicians and APPs. Clinicians across all settings prioritized provision of guideline-concordant care but implemented these guidelines with varying degrees of success. The provision of guideline-concordant care was influenced by the patient–clinician relationship and patient or parent expectations (relational continuity); the clinician’s access to patient clinical history (informational continuity); and the consistency of care delivered (management continuity). No difference in described themes was determined by setting or clinician type; however, clinicians in primary care described having more reliable relational and informational continuity.
Conclusions:
Clinicians described the absence of long-term relationships (relational continuity) and lack of availability of prior clinical history (informational continuity) as factors that may influence outpatient antibiotic prescribing. Guideline-concordant outpatient antibiotic prescribing was facilitated by consistent practice across settings (management continuity) and the presence of relational and informational continuity, which are common only in primary care. Management continuity may be more modifiable than informational and relational continuity and thus a focus for outpatient stewardship programs.
Just like racial difference, whiteness is a social construct. The paradox of race and of whiteness is that white or nonwhite skin color means nothing in itself; rather, what matters is the social meaning that is ascribed to these differences in color. This essay examines the way whiteness has historically been constructed in both law and literature. Exploring the parallel between legal and literary histories, it refers to the literature of naturalism – Frank Norris’s The Octopus and Stephen Crane’s Maggie – as well as to the racial prerequisite cases, in which immigrants had to prove they were white and hence eligible for naturalization. In law as much as in literature, whiteness is far from homogenous, but instead seems to be eclipsed into infinite shades of whiteness. At the same time, in both literature and law, whiteness is not only linked to skin color, but to culture as well. In Crane’s novella, the cultural compatibility of the Irish is seen as dubious at best. Similarly, the Chinese cook in Norris’s novel is portrayed as culturally alien and hence as unassimilable. This essay proposes that the potential whiteness of immigrant groups is being contested in both the court of law and that of literature.
Refractory high-entropy alloys (RHEAs) are promising candidates for next-generation high-temperature materials. RHEAs containing Al, often exhibit a checkered pattern microstructure comprising a combination of disordered BCC and ordered B2 phases. Since the ordered B2 phase is based on the BCC parent matrix, distinguishing these two phases can be rather challenging. Advanced characterization techniques are necessary for a reliable qualitative and quantitative analysis of BCC and B2 phases in RHEAs. Additionally, there is a tendency for transformation of the ordered B2 phase into more complex ordered-omega type phases that are usually deleterious to mechanical properties. The current study focuses on the phase stability of a candidate RHEA, Al0.5Mo0.5NbTa0.5TiZr. Correlative transmission electron microscopy (TEM) and atom probe tomography (APT) have been employed to investigate the phase stability and transformation pathway of this RHEA when isothermally annealed at 800°C. The results show that a metastable two-phase BCC + B2 microstructure formed at the early stages of decomposition, eventually transforming into a three-phase BCC + B2 + hP18 microstructure. The hP18 phase is an ordered omega derivative of the ordered B2 phase. The correlative microscopy techniques (TEM and APT) reveal a very interesting interplay of compositional partitioning between the different phases and their respective stability.
We investigate the intermittent dynamics of momentum transport and its underlying time scales in the near-wall region of the neutrally stratified atmospheric boundary layer in the presence of a vegetation canopy. This is achieved through an empirical analysis of the persistence time scales (periods between successive zero-crossings) of momentum flux events, and their connection to the ejection–sweep cycle. Using high-frequency measurements from the GoAmazon campaign, spanning multiple heights within and above a dense canopy, the analysis suggests that, when the persistence time scales ($t_p$) of momentum flux events from four different quadrants are separately normalized by $\varGamma _{w}$ (integral time scale of the vertical velocity), their distributions $P(t_p/\varGamma _{w})$ remain height-invariant. This result points to a persistent memory imposed by canopy-induced coherent structures, and to their role as an efficient momentum-transporting mechanism between the canopy airspace and the region immediately above. Moreover, $P(t_p/\varGamma _{w})$ exhibits a power-law scaling at times $t_{p}<\varGamma _{w}$, with an exponential tail appearing for $t_{p} \geq \varGamma _{w}$. By separating the flux events based on $t_p$, we discover that around 80 % of the momentum is transported through the long-lived events ($t_{p} \geq \varGamma _{w}$) at heights immediately above the canopy, while the short-lived ones ($t_{p} < \varGamma _{w}$) only contribute marginally ($\approx 20\,\%$). To explain the role of instantaneous flux amplitudes in momentum transport, we compare the measurements with newly developed surrogate data and establish that the range of time scales involved with amplitude variations in the fluxes tends to increase as one transitions from within to above the canopy.
A supraglacial debris layer controls energy transfer to the ice surface and moderates ice ablation on debris-covered glaciers. Measurements of vertical temperature profiles within the debris enables the estimation of thermal diffusivities and sub-debris ablation rates. We have measured the debris-layer temperature profiles at 16 locations on Satopanth Glacier (central Himalaya) during the ablation seasons of 2016 and 2017. Debris temperature profile data are typically analysed using a finite-difference method, assuming that the debris layer is a homogeneous one-dimensional thermal conductor. We introduce three more methods for analysing such data that approximate the debris layer as either a single or a two-layered conductor. We analyse the performance of all four methods using synthetic experiments and by comparing the estimated ablation rates with in situ glaciological observations. Our analysis shows that the temperature measurements obtained at equispaced sensors and analysed with a two-layered model improve the accuracy of the estimated thermal diffusivity and sub-debris ablation rate. The accuracy of the ablation rate estimates is comparable to that of the in situ observations. We argue that measuring the temperature profile is a convenient and reliable method to estimate seasonal to sub-seasonal variations of ablation rates in the thickly debris-covered parts of glaciers.
The reduction of computational costs in the context of the Multidisciplinary Design Optimisation of a typical medium-range aircraft was investigated through an assessment of active constraints and the use of multi-fidelity models-based estimation of drag and structural stress. The results show that for this problem, from the set of considered constraints that includes flutter boundary, the active constraint is a 2.5g pull up Maximum Take Off Weight. Results show that the multi-fidelity approach reduced the required high-fidelity aerodynamic number of evaluations, for both drag assessment and stress assessment with sufficient level of accuracy for the former and conservatively for the latter. Further computational cost reduction can be achieved using a surrogate model based Multidisciplinary Design Optimisation. The best configuration attained shows an Aspect Ratio increase of 16%, a reduction of 4.5% in fuel consumption and wing structural weight increase of 2.7% relative to a predefined baseline configuration.
Acritarch biostratigraphic and δ13C chemostratigraphic data from the Krol A Formation in the Solan area (Lesser Himalaya, northern India) are integrated to aid inter-basinal correlation of early–middle Ediacaran strata. We identified a prominent negative δ13C excursion (likely equivalent to EN2 in the lower Doushantuo Formation in the Yangtze Gorges area of South China), over a dozen species of acanthomorphs (including two new species—Cavaspina tiwariae Xiao n. sp., Dictyotidium grazhdankinii Xiao n. sp.), and numerous other microfossils from an interval in the Krol A Formation. Most microfossil taxa from the Krol A and the underlying Infra-Krol formations are also present in the Doushantuo Formation. Infra-Krol acanthomorphs support a correlation with the earliest Doushantuo biozone: the Appendisphaera grandis-Weissiella grandistella-Tianzhushania spinosa Assemblage Zone. Krol A microfossils indicate a correlation with the second or (more likely, when δ13C data are considered) the third biozone in the lower Doushantuo Formation (i.e., the Tanarium tuberosum-Schizofusa zangwenlongii or Tanarium conoideum-Cavaspina basiconica Assemblage Zone). The association of acanthomorphs with EN2 in the Krol Formation fills a critical gap in South China where chert nodules, and thus acanthomorphs, are rare in the EN2 interval. Like many other Ediacaran acanthomorphs assemblages, Krol A and Doushantuo acanthomorphs are distributed in low paleolatitudes, and they may represent a distinct paleobiogeographic province in east Gondwana. The Indian data affirm the stratigraphic significance of acanthomorphs and δ13C, clarify key issues of lower Ediacaran bio- and chemostratigraphic correlation, and strengthen the basis for the study of Ediacaran eukaryote evolution and paleobiogeography.
A multidecadal-resolved stalagmite δ18O record from two nearby caves, Lianhua and Dragon, in Shanxi Province, northern China, characterizes the detailed East Asian summer monsoon (EASM) intensity changes at 114.6–108.3 ka during Marine Oxygen Isotope Stage 5d. Our record shows an intensification of the EASM at 114.6–109.5 ka, followed by a rapid weakening at 109.5–108.4 ka. The millennial-scale strong monsoonal event appears to be correlated with the warm Greenland interstadial 25 (GI 25), whereas the weak monsoonal event is related to the cold Greenland stadial 25 within dating errors. The GI 25 monsoonal event registered in our record is also documented in various published time series from different regions of China. The lines of evidence indicate that this event occurred over the entirety of monsoonal China and was also broadly antiphase, similar to the corresponding event on a millennial time scale in the South American monsoon territory. In our record, one 700 yr weak monsoon event at 110.7+0.6−0.5 to 110.0+0.8−0.4 ka divides the GI 25 into three substages. These multicentennial to millennial–scale monsoon events correspond to two warm periods and an intervening cold interval for the intra-interstadial climate oscillations within GI 25, thus supporting a persistent coupling of the high- and low-latitude climate systems over the last glacial period.
To improve appropriate antibiotic prescribing for children in Tennessee.
Design:
We performed a before-and-after intervention study with 3 comparison periods: period 1 (P1, baseline) May 2018–September 2019; period 2 (P2, intervention before the COVID-19 pandemic) November 11, 2019–March 20, 2020; and period 3 (P3, intervention during the coronavirus disease 2019 [COVID-19] pandemic) March 21, 2020–November 10, 2020. We additionally surveyed participating providers to assess acceptance of the intervention.
Setting:
Community general pediatrics practices.
Participants:
In total, 81 general pediatricians, family medicine physicians, and nurse practitioners in 5 general pediatrics practices participated in this study.
Interventions:
Each practice identified a practice and operations champion for the project. Practices chose 2–4 implementation strategies previously shown to be effective at reducing outpatient antibiotic use to implement in their practice throughout the study intervention period. Study personnel also held quarterly meetings with all providers to review deidentified peer comparison feedback both across practices enrolled in the study and at the provider level within each practice.
Results:
We detected improvements in guideline-concordant antibiotic use in the pre-COVID-19 intervention period, and they were sustained in the study period during the pandemic (P3): otitis media (P1 72.14% vs P2 81.42% vs P3 86.11%), group A streptococcal pharyngitis (P1 66.13% vs P2 81.56% vs P3 80.44%), pneumonia (P1 70.6% vs P2 76.2% vs P3 100%), sinusitis (P1 76.2% vs P2 83.78% vs P3 82.86%), skin and soft-tissue infections (P1 97.18% vs P2 100% vs P3 100%).
Conclusions:
Bundled implementation strategies led to significant increases in guideline-concordant antibiotic prescribing for all diagnoses. Survey results demonstrate that the bundled implementation strategies were well-accepted by providers.
Young people with social disability and severe and complex mental health problems have poor outcomes, frequently struggling with treatment access and engagement. Outcomes may be improved by enhancing care and providing targeted psychological or psychosocial intervention.
Aims
We aimed to test the hypothesis that adding social recovery therapy (SRT) to enhanced standard care (ESC) would improve social recovery compared with ESC alone.
Method
A pragmatic, assessor-masked, randomised controlled trial (PRODIGY: ISRCTN47998710) was conducted in three UK centres. Participants (n = 270) were aged 16–25 years, with persistent social disability, defined as under 30 hours of structured activity per week, social impairment for at least 6 months and severe and complex mental health problems. Participants were randomised to ESC alone or SRT plus ESC. SRT was an individual psychosocial therapy delivered over 9 months. The primary outcome was time spent in structured activity 15 months post-randomisation.
Results
We randomised 132 participants to SRT plus ESC and 138 to ESC alone. Mean weekly hours in structured activity at 15 months increased by 11.1 h for SRT plus ESC (mean 22.4, s.d. = 21.4) and 16.6 h for ESC alone (mean 27.7, s.d. = 26.5). There was no significant difference between arms; treatment effect was −4.44 (95% CI −10.19 to 1.31, P = 0.13). Missingness was consistently greater in the ESC alone arm.
Conclusions
We found no evidence for the superiority of SRT as an adjunct to ESC. Participants in both arms made large, clinically significant improvements on all outcomes. When providing comprehensive evidence-based standard care, there are no additional gains by providing specialised SRT. Optimising standard care to ensure targeted delivery of existing interventions may further improve outcomes.
Cardiac intensivists frequently assess patient readiness to wean off mechanical ventilation with an extubation readiness trial despite it being no more effective than clinician judgement alone. We evaluated the utility of high-frequency physiologic data and machine learning for improving the prediction of extubation failure in children with cardiovascular disease.
Methods:
This was a retrospective analysis of clinical registry data and streamed physiologic extubation readiness trial data from one paediatric cardiac ICU (12/2016-3/2018). We analysed patients’ final extubation readiness trial. Machine learning methods (classification and regression tree, Boosting, Random Forest) were performed using clinical/demographic data, physiologic data, and both datasets. Extubation failure was defined as reintubation within 48 hrs. Classifier performance was assessed on prediction accuracy and area under the receiver operating characteristic curve.
Results:
Of 178 episodes, 11.2% (N = 20) failed extubation. Using clinical/demographic data, our machine learning methods identified variables such as age, weight, height, and ventilation duration as being important in predicting extubation failure. Best classifier performance with this data was Boosting (prediction accuracy: 0.88; area under the receiver operating characteristic curve: 0.74). Using physiologic data, our machine learning methods found oxygen saturation extremes and descriptors of dynamic compliance, central venous pressure, and heart/respiratory rate to be of importance. The best classifier in this setting was Random Forest (prediction accuracy: 0.89; area under the receiver operating characteristic curve: 0.75). Combining both datasets produced classifiers highlighting the importance of physiologic variables in determining extubation failure, though predictive performance was not improved.
Conclusion:
Physiologic variables not routinely scrutinised during extubation readiness trials were identified as potential extubation failure predictors. Larger analyses are necessary to investigate whether these markers can improve clinical decision-making.
The cosmic evolution of the chemical elements from the Big Bang to the present time is driven by nuclear fusion reactions inside stars and stellar explosions. A cycle of matter recurrently re-processes metal-enriched stellar ejecta into the next generation of stars. The study of cosmic nucleosynthesis and this matter cycle requires the understanding of the physics of nuclear reactions, of the conditions at which the nuclear reactions are activated inside the stars and stellar explosions, of the stellar ejection mechanisms through winds and explosions, and of the transport of the ejecta towards the next cycle, from hot plasma to cold, star-forming gas. Due to the long timescales of stellar evolution, and because of the infrequent occurrence of stellar explosions, observational studies are challenging, as they have biases in time and space as well as different sensitivities related to the various astronomical methods. Here, we describe in detail the astrophysical and nuclear-physical processes involved in creating two radioactive isotopes useful in such studies,
$^{26}\mathrm{Al}$
and
$^{60}\mathrm{Fe}$
. Due to their radioactive lifetime of the order of a million years, these isotopes are suitable to characterise simultaneously the processes of nuclear fusion reactions and of interstellar transport. We describe and discuss the nuclear reactions involved in the production and destruction of
$^{26}\mathrm{Al}$
and
$^{60}\mathrm{Fe}$
, the key characteristics of the stellar sites of their nucleosynthesis and their interstellar journey after ejection from the nucleosynthesis sites. This allows us to connect the theoretical astrophysical aspects to the variety of astronomical messengers presented here, from stardust and cosmic-ray composition measurements, through observation of
$\gamma$
rays produced by radioactivity, to material deposited in deep-sea ocean crusts and to the inferred composition of the first solids that have formed in the Solar System. We show that considering measurements of the isotopic ratio of
$^{26}\mathrm{Al}$
to
$^{60}\mathrm{Fe}$
eliminate some of the unknowns when interpreting astronomical results, and discuss the lessons learned from these two isotopes on cosmic chemical evolution. This review paper has emerged from an ISSI-BJ Team project in 2017–2019, bringing together nuclear physicists, astronomers, and astrophysicists in this inter-disciplinary discussion.
Recombinant tissue plasminogen activator improves outcomes in acute ischemic stroke. Alteplase may result in thrombus migration (TM) distally to a critical arterial supply that can worsen perfusion to eloquent brain tissue. Alteplase-related stroke recanalization and clot migration in vertebral artery (VA) occlusion whereby the clot migrates to the basilar artery (BA) may be harmful. We identified seven subjects with isolated symptomatic vertebral occlusion. Two cases suffered early neurologic deterioration due to TM from VA to BA following alteplase. Precautionary transfer to thrombectomy centers may be warranted in alteplase-treated symptomatic VA occlusions in case of migration to basilar occlusion.
It has been more than a year of the global unprecedented Coronavirus disease 2019 (COVID-19) crisis. The pandemic has exposed and exploited risks not only related to health, but also the societies, economies and our future. India, being one of the worst hit nations during this outbreak, has faced a significant economic fallout with certain vulnerable populations enduring major humanitarian crisis. The frontline workers, age and gender minorities, socio-economically impoverished and migrant workers have been disproportionately affected in India, with the disparities being widened further in the sub- continent with the second largest population and a marked socio-ethnic diversity.
COVID-19 is in no way a “great equalizer”, contrary to its popular term. Older adults are at disproportionate risk of severe infection, mortality as well as loneliness, seclusion, abuse and neglect during the pandemic. Age and ageism have both factored as risks for physical and psychosocial burden of the elderly. Besides the medical factors, lack of social security, isolation, stigma, sexism, elder abuse, loss of autonomy and restricted healthcare access are crucial in the pandemic situation. Among the proposed pathways to restore human rights and societal balance during such a global crisis, social cohesion is a potential strategy. A multi-dimensional driver of long-term prosperity and collectivism, social cohesion refers to the extent of connectedness and solidarity among various groups. Interpersonal relationships within the community and sense of belongingness are the twin pillars on which social cohesion stands. This presentation reviews psychosocial vulnerabilities of older adults during infectious disease outbreaks in light of the present pandemic and proposes strategies to mitigate this marginalization through the WHO’s concept of healthy ageing based on social cohesion and inclusion. In this regard, policies and interventions require deep reflections on how best to balance opportunities and adversities, and sustain resilience to cope both with the present and future.
The world is ageing fast with a renewed emphasis on comprehensive healthcare for older people. This has created a paradigm shift towards rights and social justice-based approach to augment the medical model of mental healthcare. Dignity is one such construct embedded into the human-rights approach. It comprises of self-respect and worthiness of an individual as well as social acceptance of his/her identity. Dignity is a multi-faceted concept and consists of privacy, independence, inclusion, autonomy, etc. It includes community participation, functional abilities, rights to sexuality and oral healthcare, outcomes which are often neglected in conventional psychogeriatric care. Ageism and fear of ageing can exacerbate social stereotypes thereby compromising dignity in older people and risk of elder abuse.
Geriatric psychiatry is uniquely positioned to equip mental healthcare with a ‘dignity-based’ approach promoting social connectedness and health equality. This further needs integration into all levels of public health for better access and holistic psychosocial management.
With this background and on the backdrop on the unique psychosocial challenges posed by the COVID- 19 pandemic, this symposium glances at various dimensions of dignity-based psychogeriatric care:
– Practical approach towards dignity promotion in healthcare using an attributional model
– Perspectives, healthcare challenges and research from LMIC like Brazil and India related to dignity among older people and its impact on ageism and human rights
– Rights-based geriatric mental healthcare in the developed nations
– Finally, an urgent call for Convention on human rights of older persons for promoting dignity in healthcare and combatting ageism
Remnants of some of the planet’s most ancient life forms, stromatolites in the late Mesoproterozoic sea of the Chattisgarh Basin, India, preserve a conspicuous sinuous pattern. They occur as successive biostromes, 10–30 cm thick, separated by 2–5-cm-thick marly layers and discrete bioherms up to several metres thick and 20 m across. Stromatolite columns in the Chandi Formation are 5–10 cm high, sinuous, inclined and straight, with both branched and non-branched types. These stromatolites are composed of calcite micrite and show well defined light and dark laminae with evidence of erosion between lamina sets. The column sinuosity probably originated as a response to changes in direction and strength of currents. Successive flat beds of stromatolite (biostromes), separated by marl/clay horizons, impart a rhythmic pattern to the succession. The Chandi sinuous stromatolite columns resemble those occurring in China, North America and Siberia, of a comparable age, suggesting that similar marine conditions of stromatolite formation might have been operating in the late Mesoproterozoic seas worldwide. However, the petrographic and sedimentological analyses of these stromatolites indicate their development through in situ production of carbonate with some trapping and binding of detrital sediment. As a result of the presence of terrigenous material within the stromatolites, whole-rock geochemical analyses for trace elements and rare earth elements cannot be used for interpretation of seawater chemistry and the redox conditions at the time.
Antibiotics are widely used in neonatal intensive care units (NICUs). We conducted a cross-sectional analysis of antibiotic use across US NICUs to evaluate overall, broad-spectrum, and combination antibiotic use. Patterns of antibiotic use varied by medical versus surgical service line, hospital, and geographic location.