We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The time-of-flight technique coupled with semiconductor detectors is a powerful instrument to provide real-time characterization of ions accelerated because of laser–matter interactions. Nevertheless, the presence of strong electromagnetic pulses (EMPs) generated during the interactions can severely hinder its employment. For this reason, the diagnostic system must be designed to have high EMP shielding. Here we present a new advanced prototype of detector, developed at ENEA-Centro Ricerche Frascati (Italy), with a large-area (15 mm × 15 mm) polycrystalline diamond sensor having 150 μm thickness. The tailored detector design and testing ensure high sensitivity and, thanks to the fast temporal response, high-energy resolution of the reconstructed ion spectrum. The detector was offline calibrated and then successfully tested during an experimental campaign carried out at the PHELIX laser facility (
${E}_L\sim$
100 J,
${\tau}_L = 750$
fs,
${I}_L\sim \left(1{-}2.5\right)\times {10}^{19}$
W/cm2) at GSI (Germany). The high rejection to EMP fields was demonstrated and suitable calibrated spectra of the accelerated protons were obtained.
We assessed the content of some major and trace elements and lichen compounds as well as antioxidant activity in eight lichen species representing four families collected in areas > 1 km distant from Bellingshausen (King George Island) and > 1 km distant from Molodezhnaya (Thala Hills, Enderby Land) research stations. Content levels of Cu, Pb, Cd, Zn and As in Physcia caesia, Physconia muscigena, Umbilicaria aprina, Umbilicaria decussata and Usnea aurantiaco-atra thalli were similar to or lower than previously reported for these species in the Maritime and Continental Antarctic, as well as from reference sites. The first data on the contents of 15 elements in Ramalina terebrata and Thamnolecania brialmontii thalli from the Maritime Antarctic are reported. Our analyses confirmed the presence of the main photosynthetic pigments in the species examined (chlorophyll a and b, phaeophytin a and b, neoxanthin, violaxanthin, lutein and β-carotene). We identified protolichesterinic acid in T. brialmontii thalli for the first time. Antioxidant activity varied from 190 μg/g dry weight (U. decussata) to 14,740 μg/g dry weight (T. brialmontii). The data obtained complement previous research while also providing new baseline data that will have utility in monitoring and identifying future change.
The quantum effects in plasmas can be described by the hydrodynamics containing the continuity and Euler equations. However, novel quantum phenomena are found via the extended set of hydrodynamic equations, where the pressure evolution equation and the pressure flux third-rank tensor evolution equation are included. These give the quantum corrections to the Coulomb interaction. The spectra of the Langmuir waves and the spin-electron acoustic waves are calculated. The application of the pressure evolution equation ensures that the contribution of pressure in the Langmuir wave spectrum is proportional to $(3/5)v_{\textrm {Fe}}^{2}$ rather than $(1/3)v_{\textrm {Fe}}^{2}$, where $v_{\textrm {Fe}}$ is the Fermi velocity.
Large-amplitude electromagnetic radiofrequency fields are created by the charge-separation induced in interactions of high-intensity, short-pulse lasers with solid targets and have intensity that decreases with the distance from the target. Alternatively, it was experimentally proved very recently that charged particles emitted by petawatt laser–target interactions can be deposited on a capacitor-collector structure, far away from the target, and lead to the rapid (nanosecond-scale) generation of large quasi-static electric fields ($\mathrm{MV}/\mathrm{m}$), over wide regions. We demonstrate here the generation of both these fields in experiments at the PHELIX laser facility, with approximately $20\;\mathrm{J}$ energy and approximately ${10}^{19}\;\mathrm{W}/\mathrm{c}{\mathrm{m}}^2$ intensity, for picoseconds laser pulses, interacting with pre-ionized polymer foams of near critical density. Quasi-static fields, up to tens of kV/m, were here observed at distances larger than $1\;\mathrm{m}$ from the target, with results much higher than the radiofrequency component. This is of primary importance for inertial-confinement fusion and laser–plasma acceleration and also for promising applications in different scenarios.
In the literature, there are conflicting data regarding the recovery of mental disorders, in particular, pathologies of the emotional, personality, behavioral and cognitive spheres, in patients after surgical treatment of tumors of the diencephalic region.
Objectives
To evaluate the dynamics of psychopathological disorders after removal of a craniopharyngioma.
Methods
45 patients (18–68 y.o.), operated through transcranial access. The follow-up period ranged from 3 months to 9 years (on average 2.8 + 0.4). The main method is psychopathological, supplemented by rating scales and questionnaires.
Results
In the late postoperative period, mental disorders were detected in 75% of patients (Table 1). Table 1. Dynamics of the main psychopathological symptom complexes (n = 45).
Disorders (may be a combination)
Before surgery (n,%)
2 weeks after (n,%)
18 months after (n,%)
Emotional and volitional
27 (60%)
27 (60%)
15 (33%)
Cognitive - Korsakov syndrome
18 (40%) 4 (9%)
27 (59%) 8 (18%)
18 (40%) 7 (15%)
Personality
21 (46%)
25 (55%)
23 (51%)
The table shows that emotional-volitional disorders have a clear positive dynamics by 18 months after surgery compared with the preoperative level. Korsakov’s syndrome and personality disorders are less favorable. 23 patients (52%) returned to their previous profession; 22 (48%) stopped working due to a severe degree of disability, of which 7 (15%) need constant supervision.
Conclusions
The positive dynamics of psychopathological symptoms is observed only within 1.5 years after the removal of the craniopharyngioma, in the future they remain without a tendency to improve. 22 patients (48%) stopped working. The most severe degree of disability is 15% patients.
Biological imaging tools continue to increase in speed, scale, and resolution, often resulting in the collection of gigabytes or even terabytes of data in a single experiment. In comparison, the ability of research laboratories to store and manage this data is lagging greatly. This leads to limits on the collection of valuable data and slows data analysis and research progress. Here we review common ways researchers store data and outline the drawbacks and benefits of each method. We also offer a blueprint and budget estimation for a currently deployed data server used to store large datasets from zebrafish brain activity experiments using light-sheet microscopy. Data storage strategy should be carefully considered and different options compared when designing imaging experiments.
The process of high energy electron acceleration along the surface of grating targets (GTs) that were irradiated by a relativistic, high-contrast laser pulse at an intensity $I=2.5\times 10^{20}~\text{W}/\text{cm}^{2}$ was studied. Our experimental results demonstrate that for a GT with a periodicity twice the laser wavelength, the surface electron flux is more intense for a laser incidence angle that is larger compared to the resonance angle predicted by the linear model. An electron beam with a peak charge of ${\sim}2.7~\text{nC}/\text{sr}$, for electrons with energies ${>}1.5~\text{MeV}$, was measured. Numerical simulations carried out with parameters similar to the experimental conditions also show an enhanced electron flux at higher incidence angles depending on the preplasma scale length. A theoretical model that includes ponderomotive effects with more realistic initial preplasma conditions suggests that the laser-driven intensity and preformed plasma scale length are important for the acceleration process. The predictions closely match the experimental and computational results.
Thin viscous liquid films sitting on a solid substrate support nonlinear capillary waves, driven by surface shear stresses at a liquid–gas interface. When surface tension is spatially dependent other mechanisms, such as the thermocapillary effect, influence the dynamics of thin films. In this article we show that in liquids with broken time-reversal symmetry the character of the aforementioned waves and of the thermocapillary effect are significantly modified due to the presence of odd or Hall viscosity in the liquid. This is because odd viscosity gives rise to new terms in the pressure gradient of the flow thus modifying the evolution equation of the liquid–gas interface accordingly. These terms in turn break the reflection symmetry of the evolution equation leading the system to evolve from a pitchfork to a Hopf bifurcation. The odd-viscosity incipient waves can stabilize unstable thin liquid films. For instance, we show that they can suppress the thermocapillary instability. We establish the parameter ranges that odd viscosity has to satisfy in order to initiate those waves that will lead to stability.
Thin liquid films sitting on a heated solid substrate and surrounded by a colder ambient gas phase are strongly affected by surface-shear stresses induced by surface tension and temperature gradients, as well as by viscous and capillary forces. The temperature dependence of surface tension may lead to thinning of liquid-film depressions promoting instability which takes place when a critical temperature difference $\unicode[STIX]{x0394}\unicode[STIX]{x1D717}_{cr}$ between the substrate and the ambient gas phase is exceeded. In this article we show theoretically that viscous heating, previously neglected in related literature, may delay or suppress the thermocapillary instability and leads to film healing. The viscous heating effect, by inhibiting heat transfer, prevents the system from reaching the critical value $\unicode[STIX]{x0394}\unicode[STIX]{x1D717}_{cr}$ required to bring about instability. As a consequence, the system remains within the stability region, suppressing film rupture. The presence of the viscous heating effect leads to a persistent circulating motion of two counter-rotating vortices lying diametrically opposite to a depression of the liquid–gas interface reducing the wavelength of disturbances to one half of its initial value. This effect has yet to be observed in experiment.
The use of targets with surface structures for laser-driven particle acceleration has potential to significantly boost the particle and radiation energies because of enhanced laser absorption. We investigate, via experiment and particle-in-cell simulations, the impact of micron-scale surface-structured targets on the spectrum of electrons and protons accelerated by a picosecond laser pulse at relativistic intensity. Our results show that, compared with flat-surfaced targets, structures on this scale give rise to a significant enhancement in particle and radiation emission over a wide range of laser–target interaction parameters. This is due to the longer plasma scale length when using micro-structures on the target front surface. We do not observe an increase in the proton cutoff energy with our microstructured targets, and this is due to the large volume of the relief.
The Ordovician history of fish is limited by a combination of biological, environmental and taphonomic constraints but appears to contain significant milestones referencing the first appearances of a number of major groups, including putative jawed fish. In addition, the depositional settings from which fish are recovered are restricted to a narrow range of environments, and, similarly, the stratigraphic coverage remains patchy despite increases in reporting over recent years. The Gondwanan and Laurentian record further diminishes with the onset of the end-Ordovician glaciation and concomitant extinction event, a pattern which continues into ‘Talimaa’s Gap’ at the base of the Silurian. Phylogenetically, many of the Ordovician taxa are problematic to place in the higher taxonomic groupings that dominate the Siluro-Devonian. With caution, a number of the scale-based taxa fall within the crown-gnathostomes, re-emphasizing the importance of the Great Ordovician Biodiversification Event in setting the scene for subsequent vertebrate evolutionary radiations and range expansions.
To consider the contribution of the spin–orbit interaction in the extraordinary wave spectrum we derive a generalization of the separate spin evolution quantum hydrodynamics. Applying the corresponding nonlinear Pauli equation we include the Fermi spin current contribution in the spin evolution. We find that the spectrum of extraordinary waves consists of three branches: two of them are well-known extraordinary waves and the third one is the spin-electron acoustic wave. A change of the extraordinary wave spectrum due to the spin–orbit interaction is also obtained.
The processes of trapping, compression, and acceleration of short electron bunches externally injected into the wakefields generated by intense femtosecond laser pulse in a plasma channel are analyzed and optimized. The influence of the laser non-linear dynamics to the longitudinal bunch compression and impact of the beam loading effect (self-action of the bunch charge) to the finite energy and the energy spread of the accelerated electrons are investigated. The limitations to the charge of accelerated electron bunch determined by the requirement of a small width of the electron energy distribution of the bunch are found.
It was shown (Faenov et al., 2015b) that the energy of femtosecond laser pulses with relativistic intensity approaching to ~1021 W/cm2 is efficiently converted to X-ray radiation and produces exotic states in solid density plasma periphery. We propose and show by one-dimensional two-temperature hydrodynamic modeling, that applying two such unique ultra-bright X-ray sources with intensities above 1017 W/cm2 – allow to generate shock waves with strength of up to some hundreds Mbar, which could give new opportunities for studies of matter in extreme conditions.
Radiocarbon-dated macrofossils are used to document Holocene treeline history across northern Russia (including Siberia). Boreal forest development in this region commenced by 10,000 yr B.P. Over most of Russia, forest advanced to or near the current arctic coastline between 9000 and 7000 yr B.P. and retreated to its present position by between 4000 and 3000 yr B.P. Forest establishment and retreat was roughly synchronous across most of northern Russia. Treeline advance on the Kola Peninsula, however, appears to have occurred later than in other regions. During the period of maximum forest extension, the mean July temperatures along the northern coastline of Russia may have been 2.5° to 7.0°C warmer than modern. The development of forest and expansion of treeline likely reflects a number of complimentary environmental conditions, including heightened summer insolation, the demise of Eurasian ice sheets, reduced sea-ice cover, greater continentality with eustatically lower sea level, and extreme Arctic penetration of warm North Atlantic waters. The late Holocene retreat of Eurasian treeline coincides with declining summer insolation, cooling arctic waters, and neoglaciation.
Pollen data from two sections from a coastal cliff on the western Yamal Peninsula (69°43.27′N, 66°48.80′E) document the environmental history during the Karginsky (Middle Weichselian) interstadial. Low pollen concentrations, high amounts of redeposited pollen, and relatively high presence of Artemisia pollen characterize sediments deposited at about 33,000 14C yr B.P. Grass-sedge plant associations with few other herbs occupied the area during the late Karginsky interstadial. Artemisia pollen may indicate rather xerophytic vegetation and disturbed soils in the area. The dominance of redeposited pollen reflects scarce (disturbed) vegetation cover and low pollen productivity. The climate was relatively cold and dry. Sediments dated to 32,400 14C yr B.P. contain fewer redeposited pollen and concentration of non-redeposited pollen is significantly higher. Pollen contents indicate the dominance of tundra-like grass-sedge vegetation and more humid conditions. Pollen records dated between 30,100 and 25,100 14C yr B.P. also reflect scarce tundra-like vegetation during this interval. The presence of Betula nana and Salix pollen may reflect limited presence of shrub communities. This suggests that the climate was somewhat warmer during the latter part of the interstadial. However, generally the pollen records show that harsh environmental conditions prevailed on the Yamal Peninsula during the Karginsky interstadial.
A unique 800-yr-long record of annual temperatures and precipitation over the south of western Siberia has been reconstructed from the bottom sediments of Teletskoye Lake, Altai Mountains using an X-ray fluorescence scanner (XRF) providing 0.1-mm resolution timeseries of elemental composition and X-ray density (XRD). Br content appears to be broadly correlative with mean annual temperature variations because of changes in catchment vegetation productivity. Sr/Rb ratio reflects the proportion of the unweathered terrestrial fraction. XRD appears to reflect water yield regime and sediment flux. Sedimentation is rather continuous because annual clastic supply and deposited mass are the same. The artificial neural networks method was applied to convert annual sedimentary time-series of XRD, Br content, and Sr/Rb ratio to annual records of temperature and precipitation using a transfer function. Comparison of these reconstructed Siberian records with the annual record of air temperature for the Northern Hemisphere shows similar trends in climatic variability over the past 800 yr. Estimated harmonic oscillations of temperature and precipitation values for both historical and reconstructed periods reveal subdecadal cyclicity.
A high-resolution pollen record from Lake Teletskoye documents the climate-related vegetation history of the northern Altai Mountain region during the last millennium. Siberian pine taiga with Scots pine, fir, spruce, and birch dominated the vegetation between ca. AD 1050 and 1100. The climate was similar to modern. In the beginning of the 12th century, birch and shrub alder increased. Lowered pollen concentrations and simultaneous peaks in herbs (especially Artemisia and Poaceae), ferns, and charcoal fragments point to colder and more arid climate conditions than before, with frequent fire events. Around AD 1200, regional climate became warmer and more humid than present, as revealed by an increase of Siberian pine and decreases of dry herb taxa and charcoal contents. Climatic conditions were rather stable until ca. AD 1410. An increase of Artemisia pollen may reflect slightly drier climate conditions between AD 1410 and 1560. Increases in Alnus, Betula, Artemisia, and Chenopodiaceae pollen and in charcoal particle contents may reflect further deterioration of climate conditions between AD 1560 and 1810, consistent with the Little Ice Age. After AD 1850 the vegetation gradually approached the modern one, in conjunction with ongoing climate warming.
Pollen records from perennially frozen sequences provide vegetation and climate reconstruction for the last 48,000 14C years in the central part of Taymyr Peninsula. Open larch forest with Alnus fruticosa and Betula nana grew during the Kargin (Middle Weichselian) Interstade, ca. 48,000–25,000 14C yr B.P. The climate was generally warmer and wetter than today. Open steppe-like communities with Artemisia, Poaceae, Asteraceae, and herb tundralike communities with dwarf Betula and Salix dominated during the Sartan (Late Weichselian) Stade, ca. 24,000–10,300 14C yr B.P. The statistical information method used for climate reconstruction shows that the coldest climate was ca. 20,000–17,000 14C yr B.P. A warming (Allerød Interstade?) with mean July temperature ca. 1.5°C warmer than today occurred ca. 12,000 14C yr B.P. The following cooling with temperatures about 3°–4°C cooler than present and precipitation about 100 mm lower corresponds well with the Younger Dryas Stade. Tundra–steppe vegetation changed to Betula nana–Alnus fruticosa shrub tundra ca. 10,000 14C yr B.P. Larch appeared in the area ca. 9400 14C yr B.P. and disappeared after 2900 14C yr B.P. Cooling events ca. 10,500, 9600, and 8200 14C yr B.P. characterized the first half of the Holocene. A significant warming occurred ca. 8500 14C yr B.P., but the Holocene temperature maximum was at about 6000–4500 14C yr B.P. The vegetation cover approximated modern conditions ca. 2800 14C yr B.P. Late Holocene warming events occurred at ca. 3500, 2000, and 1000 14C yr B.P. A cooling (Little Ice Age?) took place between 500 and 200 14C yr ago.