We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We sought to examine the influence of clinically severe lower respiratory tract infection on pulmonary artery pressure in children having CHD with post-tricuspid left-to-right shunt, as it may have physiological and clinical implications. In a prospective single-centre observational study, 45 children with post-tricuspid left-to-right shunt and clinically severe lower respiratory tract infection were evaluated during the illness and 2 weeks after its resolution. Pulmonary artery systolic pressure was estimated non-invasively using shunt gradient by echocardiography and systolic blood pressure measured non-invasively.
Median pulmonary artery systolic pressure during lower respiratory tract infection was only mildly (although statistically significantly) elevated during lower respiratory tract infection [60 (42–74) versus 53 (40–73) mmHg, (p < 0.0001)]. However, clinically significant change in pulmonary artery systolic pressure defined as the increase of >10 mmHg was present in only 9 (20%) patients. In the absence of hypoxia or acidosis, only a small minority (9%, n = 4) showed significant pulmonary artery systolic pressure rise >10 mmHg. In the absence of hypoxia or acidosis, severe lower respiratory tract infection in patients with acyanotic CHD results in only mild elevation of pulmonary artery systolic pressure in most of the patients.
Nature has developed myriad ways for organisms to interact with their environment using light and electronic signals. Optical and electronic properties can be observed macroscopically by measuring light emission or electrical current, but are conferred at the molecular level by the arrangement of small biological molecules, specifically proteins. Here, we present a brief overview of the current uses of proteins for applications in optical and electronic materials. We provide the natural context for a range of light-emitting, light-receiving, and electronically conductive proteins, as well as demonstrate uses in biomaterials. Examples of how genetic engineering has been used to expand the range of functional properties of naturally occurring proteins are provided. We touch on how approaches to patterning and scaffolding optical and electronic proteins can be achieved using proteins with this inherent capability. While much research is still required to bring their use into the mainstream, optical and electronic proteins have the potential to create biomaterials with properties unmatched using conventional chemical synthesis.
More regions of the world are looking to decarbonize electricity production using wind and solar power generation. This major transition from traditional power sources comes with a number of technological difficulties for grid operators and a myriad of political, economic, and technological options to correct these issues. Often, the root problem associated with renewable power generation is posed as one of generation intermittency. The current grid model is based on one where generation is continually altered to match the current demand of the end users, so naturally the focus trends toward what can be done to make the intermittent generation match the daily demand. This has led to a strong focus on developing new energy-storage systems to create systems which are capable of shifting energy at the scale that will be necessary to support grids with a high penetration of renewable resources.
The linear and nonlinear mechanical properties of recombinant protein polymer networks are reviewed, with particular emphasis on how to tune elastic and dissipative behavior through selection of cross-linking strategy. The design strategies used to produce modular recombinant protein polymer networks through chemical or physical cross-linking will be discussed. In particular, we will highlight how key parameters such as polymer concentration, molecular weight, architecture, cross-link density, and association strength influence mechanics of protein polymer networks. Tuning these parameters enables control of viscoelastic properties and formation of materials with applications in tissue engineering, drug delivery, and sustainable self-healing materials.
Biological materials represent a major source of inspiration to engineer protein-based polymers that can replicate the properties of living systems. Combined with our ability to control the molecular structure of proteins at the single amino acid level, this results in a vast array of attractive possibilities for materials science, an interest that is undeniably related to simplified procedures in gene synthesis, cloning, and biotechnological production. In parallel, it has been increasingly appreciated that living organisms exploit liquid–liquid phase separation (LLPS) to fabricate extracellular structures. In this article, we discuss the central role of protein LLPS in the fabrication of selected biological structures, including biological adhesives and hard biomolecular composites, and how physicochemical lessons from these systems are being replicated in synthetic analogs. Recent translational applications of protein LLPS are highlighted, notably aqueous-resistant adhesives, stimuli-responsive therapeutics carriers, and matrix materials for green structural composites.
With today's rapidly increasing demand for lithium-ion batteries (LIBs) for emerging applications, such as electric vehicles (EVs) and large-scale grid storage, it begs the question of how sustainable batteries really are. Proponents of increasing electrification of our modern society often tout the environmental benefits of using battery energy storage over traditional fossil fuels, citing direct reductions in greenhouse gas emissions, especially when paired with renewable energy generation. Unfortunately, these often leave out considerations for the “dark side” of LIBs that few manufacturers in the battery industry have addressed: how to deal with batteries at their end of life. As the world accelerates toward displacing conventional vehicles with EVs, methods of handling large volumes of spent LIBs when these devices reach their end of life have not been fully developed. This potentially results in the accumulation of battery waste that will ultimately undo the environmental benefits batteries originally sought to achieve.
Protein materials are promising candidates as the building blocks for functional and high-performance bionanocomposites, owing to their unique and well-developed nanoscale structure, rich chemical functionality, excellent mechanical properties, biocompatibility, and biodegradability. Rational integration of protein materials with synthetic organic and inorganic nanomaterials through tailored interfacial interactions leads to synergistic enhancement in the properties compared to the individual components. In this article, we discuss the recent progress in protein-based nanocomposites, which aim to harness the unique structure and properties of proteins and synthetic nanomaterials for realizing advanced materials with greatly enhanced properties. Specifically, we highlight bionanocomposites based on two β-sheet rich proteins, silk fibroin and amyloid fibril, as representative examples as well as a few other protein materials such as keratin, elastin, and collagens. We describe the biotic–abiotic interfaces, processing methods, physical properties, and potential applications of these protein nanocomposites. Considering the additional value of renewability, abundancy, and ambient processability, such bionanocomposites are promising candidates for advanced and emerging applications, such as environmental remediation, biomedicine, biosensors, and photonics.
When I began writing this article, it was just the beginning of COVID-19, when we were not yet social distancing. Everything has changed since then, but not a conviction I have disseminated for more than 25 years. More than ever, I maintain that formally addressing the critical visual component of research should be part of every researcher's education. How you visually represent your work not only communicates to others in your discipline. Crafting your visual presentations helps clarify your own thinking and, just as important, is a means of engaging the public. In these challenging times, when society is bombarded with complex information, it is more essential than ever to develop a more accessible and honest visual “language” for the public to understand and gather that information. Formal programs in teaching visual communication will help show the world, outside the research community, how to look at science, understand it, question it, and, hopefully, make smart decisions.