Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T08:55:35.751Z Has data issue: false hasContentIssue false

7 - Building the Brain in the Dark: Functional and Specific Crossmodal Reorganization in the Occipital Cortex of Blind Individuals

from II - PLASTICITY IN CHILDHOOD

Published online by Cambridge University Press:  05 January 2013

Olivier Collignon
Affiliation:
Université de Montréal
Giulia Dormal
Affiliation:
Université de Montréal
Franco Lepore
Affiliation:
Université de Montréal
Jennifer K. E. Steeves
Affiliation:
York University, Toronto
Laurence R. Harris
Affiliation:
York University, Toronto
Get access

Summary

Introduction

The brain has long been considered as being hard wired in a predetermined manner shaped by evolution. This view has been challenged in the past decades by increasing evidence documenting the impressive capacity of the brain to be modulated through learning and experience, even well into adulthood. Pioneering studies of Hubel and Wiesel (1963; Hubel et al., 1977) on the development of ocular dominance columns have compellingly demonstrated that alterations in visual experience can influence the normal development of the visual cortex.

One of the most striking demonstrations of experience-dependent plasticity comes from studies in congenitally blind individuals (CB) showing dramatic cortical reorganizations as a consequence of visual deprivation. Experiments have documented that cortical sensory maps in the remaining senses of CB can expand with experience. For instance, finger representation in the somatosensory cortex is increased in blind individuals who are proficient Braille readers (Pascual-Leone et al., 1993; Sterr et al., 1999), and the tonotopic map in the auditory cortex is larger in visually deprived individuals (Elbert et al., 2002). Such cortical changes are thought to underlie enhanced reading abilities and auditory processing skills in the blind (Elbert et al., 2002; Sterr et al., 1998).

Aside from these examples of intramodal plasticity, massive crossmodal changes have been reported in the occipital cortex deprived of its natural visual inputs. In people born blind, occipital regions thatwould normally process visual stimuli are “hijacked” by the other senses as these regions become responsive to nonvisual input (Bavelier and Neville, 2002; Pascual-Leone et al., 2005).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amedi, A., Floel, A., Knecht, S., Zohary, E. and Cohen, L. G. (2004). Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat. Neurosci., 7: 1266–1270.Google Scholar
Amedi, A., Raz, N., Pianka, P., Malach, R. and Zohary, E. (2003). Early “visual” cortex activation correlates with superior verbal memory performance in the blind. Nat. Neurosci., 6: 758–766.Google Scholar
Amedi, A., Stern, W. M., Camprodon, J. A., Bermpohl, F., Merabet, L., Rotman, S., et al. (2007). Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex. Nat. Neurosci., 10: 687–689.Google Scholar
Arno, P., Capelle, C., Wanet-Defalque, M. C., Catalan-Ahumada, M. and Veraart, C. (1999). Auditory coding of visual patterns for the blind. Perception, 28: 1013–1029.Google Scholar
Arno, P., De Volder, A. G., Vanlierde, A., Wanet-Defalque, M. C., Streel, E., Robert, A., et al. (2001). Occipital activation by pattern recognition in the early blind using auditory substitution for vision. Neuroimage, 13: 632–645.Google Scholar
Arno, P., Vanlierde, A., Streel, E.,Wanet-Defalque, M. C., Sanabria-Bohorquez, S. M. and Veraart, C. (2001). Auditory substitution of vision: pattern recognition by blind. Appl. Cogn. Psychol., 15: 509–519.Google Scholar
Bach-y-Rita, P., Collins, C. C., Saunders, F. A., White, B., Seadden, L. and Blomberg, R. (1969). Vision substitution by tactile image projection. Nature, 221(5184): 963–964.Google Scholar
Bach-y-Rita, P., Kaczmarek, K. A., Tyler, M. E.andGarcia-Lara, J. (1998). Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. J. Rehabil. Res. Dev., 35: 427–430.Google Scholar
Bavelier, D. and Neville, H. J. (2002). Cross-modal plasticity: where and how?Nat. Rev. Neurosci., 3: 443–452.Google Scholar
Bedny, M., Konkle, T., Pelphrey, K., Saxe, R. and Pascual-Leone, A. (2010). Sensitive period for a multimodal response in human visual motion area MT/MST. Curr. Biol., 20: 1900–1906.Google Scholar
Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E. and Saxe, R. (2011). Language processing in the occipital cortex of congenitally blind adults. Proc. Natl. Acad. Sci. USA, 108: 4429–4434.Google Scholar
Berman, N. E. (1991). Alterations of visual cortical connections in cats following early removal of retinal input. Brain Res. Dev. Brain Res., 63: 163–180.Google Scholar
Bourgeois, J. P. and Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J. Neurosci., 13: 2801–2820.Google Scholar
Bourgeois, J. P. and Rakic, P. (1996). Synaptogenesis in the occipital cortex of macaque monkey devoid of retinal input from early embryonic stages. Eur. J. Neurosci., 8: 942–950.Google Scholar
Büchel, C. (1998). Functional neuroimaging studies of Braille reading: cross-modal reorganization and its implications. Brain, 121: 1193–1194.Google Scholar
Büchel, C., Price, C., Frackowiak, R. S. and Friston, K. (1998). Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain, 121: 409–419.Google Scholar
Büchel, C., Price, C. and Friston, K. (1998). A multimodal language region in the ventral visual pathway. Nature, 394: 274–277.Google Scholar
Burton, H. (2003). Visual cortex activity in early and late blind people. J. Neurosci., 23: 4005–4011.Google Scholar
Burton, H., McLaren, D. G. and Sinclair, R. J. (2006). Reading embossed capital letters: an fMRI study in blind and sighted individuals. Hum. Brain Mapp., 27: 325–339.Google Scholar
Burton, H., Snyder, A. Z., Conturo, T. E., Akbudak, E., Ollinger, J. M. and Raichle, M. E. (2002). Adaptive changes in early and late blind: a fMRI study of Braille reading. J. Neurophysiol., 87: 589–607.Google Scholar
Burton, H., Snyder, A. Z., Diamond, J. B. and Raichle, M. E. (2002). Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns. J. Neurophysiol., 88: 3359–3371.Google Scholar
Campanella, S. and Belin, P. (2007). Integrating face and voice in person perception. Trends Cogn. Sci., 11: 535–543.Google Scholar
Capelle, C., Trullemans, C., Arno, P. and Veraart, C. (1998). A real-time experimental prototype for enhancement of vision rehabilitation using auditory substitution. IEEE Trans. Biomed. Eng., 45: 1279–1293.Google Scholar
Cappe, C. and Barone, P. (2005). Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur. J. Neurosci., 22: 2886–2902.Google Scholar
Chabot, N., Charbonneau, V., Laramee, M. E., Tremblay, R., Boire, D. and Bronchti, G. (2008). Subcortical auditory input to the primary visual cortex in anophthalmic mice. Neurosci. Lett., 433: 129–134.Google Scholar
Changeux, J. P., Courrege, P. and Danchin, A. (1973). A theory of the epigenesis of neuronal networks by selective stabilization of synapses. Proc. Natl. Acad. Sci. USA, 70: 2974–2978.Google Scholar
Changeux, J. P. and Danchin, A. (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature, 264: 705–712.Google Scholar
Clavagnier, S., Falchier, A. and Kennedy, H. (2004). Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness. Cogn. Affect. Behav. Neurosci., 4: 117–126.Google Scholar
Cohen, L. G., Celnik, P., Pascual-Leone, A., Corwell, B., Falz, L., Dambrosia, J., et al. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389: 180–183.Google Scholar
Cohen, L. G., Weeks, R. A., Sadato, N., Celnik, P., Ishii, K. and Hallett, M. (1999). Period of susceptibility for cross-modal plasticity in the blind. Ann. Neurol., 45: 451–460.Google Scholar
Collignon, O., Albouy, G., Dormal, G., Vandewalle, G., Voss, P., Lassonde, M. and Lepore, F. (2011). Crossmodal plasticity but no functional specialization in the occipital cortex of late blind humans. Proc. 17th Human Brain Mapping Meeting (HBM), PQ, Canada.
Collignon, O., Davare, M., De Volder, A. G., Poirier, C., Olivier, E. and Veraart, C. (2008). Time-course of posterior parietal and occipital cortex contribution to sound localization. J. Cogn Neurosci., 20: 1454–1463.Google Scholar
Collignon, O., Davare, M., Olivier, E. and De Volder, A. G. (2009). Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans: a transcranial magnetic stimulation study. Brain Topogr., 21: 232–240.Google Scholar
Collignon, O., Lassonde, M., Lepore, F., Bastien, D. and Veraart, C. (2007). Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects. Cereb. Cortex, 17: 457–465.Google Scholar
Collignon, O., Vandewalle, G., Voss, P., Albouy, G., Charbonneau, G., Lassonde, M., et al. (2011). Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans. Proc. Natl. Acad. Sci. USA, 108: 4435–4440.Google Scholar
Collignon, O., Voss, P., Lassonde, M. and Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Exp. Brain Res., 192: 343–358.Google Scholar
Cronly-Dillon, J., Persaud, K. and Gregory, R. P. (1999). The perception of visual images encoded in musical form: a study in cross-modality information transfer. Proc. Biol. Sci., 266: 2427–2433.Google Scholar
De Volder, A. G., Bol, A., Blin, J., Robert, A., Arno, P., Grandin, C., et al. (1997). Brain energy metabolism in early blind subjects: neural activity in the visual cortex. Brain Res., 750: 235–244.Google Scholar
De Volder, A.G., Catalan-Ahumada, M., Robert, A., Bol, A., Labar, D., Coppers, A., Michel, C., Vevaart, C. (1999). Changes in occipital cortex activity in early blind humans using a sensory substitution device. Brain Res., 826: 128–134.Google Scholar
Dehay, C., Kennedy, H. and Bullier, J. (1988). Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18, and 19 in the kitten. J. Comp. Neurol., 272: 68–89.Google Scholar
Dormal, G. and Collignon, O. (2011). Functional selectivity in sensory deprived cortices. J. Neurophysiol., 105: 2627–2630.Google Scholar
Doron, N. and Wollberg, Z. (1994). Cross-modal neuroplasticity in the blind mole rat Spalax ehrenbergi: a WGA-HRP tracing study. NeuroReport, 5: 2697–2701.Google Scholar
Dufour, A., Despres, O. and Candas, V. (2005). Enhanced sensitivity to echo cues in blind subjects. Exp. Brain Res., 165: 515–519.Google Scholar
Elbert, T., Sterr, A.,Rockstroh, B., Pantev, C.,Muller, M. M. and Taub, E. (2002). Expansion of the tonotopic area in the auditory cortex of the blind. J. Neurosci., 22: 9941–9944.Google Scholar
Falchier, A., Clavagnier, S., Barone, P. and Kennedy, H. (2002). Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci., 22: 5749–5759.Google Scholar
Fine, I.,Wade, A. R., Brewer, A. A., May, M. G.,Goodman, D. F., Boynton, G. M., Wandell, B. A. and MacLeod, D. I. (2003). Long-term deprivation affects visual perception and cortex. Nat. Neurosci., 6: 915–916.Google Scholar
Frost, D. O., Boire, D., Gingras, G. and Ptito, M. (2000). Surgically created neural pathways mediate visual pattern discrimination. Proc. Natl. Acad. Sci. USA, 97: 11068–11073.Google Scholar
Frost, D. O. and Metin, C. (1985). Induction of functional retinal projections to the somatosensory system. Nature, 317: 162–164.Google Scholar
Gothe, J., Brandt, S. A., Irlbacher, K., Röricht, S., Sabel, B. A. and Meyer, B. U. (2002). Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain, 125: 479–490.Google Scholar
Gougoux, F., Belin, P., Voss, P., Lepore, F., Lassonde, M. and Zatorre, R. J. (2009). Voice perception in blind persons: a functional magnetic resonance imaging study. Neuropsychologia, 47: 2967–2974.Google Scholar
Gougoux, F., Zatorre, R. J., Lassonde, M., Voss, P. and Lepore, F. (2005). A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biol., 3: e27.Google Scholar
Gregory, R. L. (2003). Seeing after blindness. Nat. Neurosci., 6: 909–910.Google Scholar
Gregory, R. L. and Wallace, J. (1963). Recovery from early blindness: a case study. Exp. Soc. Monogr., 2. Cambridge: Heffers.
Reprinted in: Gregory, R. L. (1974). Concepts and Mechanisms of Perception. London: Duckworth.
Hamilton, R., Keenan, J. P., Catala, M. and Pascual-Leone, A. (2000). Alexia for Braille following bilateral occipital stroke in an early blind woman. NeuroReport, 11: 237–240.Google Scholar
Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E. et al. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc. Natl. Acad. Sci. USA, 88: 1621–1625.Google Scholar
Hebb, D. O. (1949). The Organization of Behavior. New York: John Wiley.
Hubel, D. H. and Wiesel, T. N. (1963). Receptive fields of cells in stritate cortex of very young, visually inexperienced kittens. J. Neurophysiol., 26: 994–1002.Google Scholar
Hubel, D. H., Wiesel, T. N. and LeVay, S. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. Lond. Biol. Sci., 278: 377–409.Google Scholar
Humayun, M. S., Weiland, J. D., Fujii, G. Y., Greenberg, R., Williamson, R., Little, J., et al. (2003). Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res., 43: 2573–2581.Google Scholar
Huttenlocher, P. R. and de Courten, C. (1987). The development of synapses in striate cortex of man. Hum. Neurobiol., 6: 1–9.Google Scholar
Innocenti, G. M. (1986). Postnatal development of corticocortical connections. Ital. J. Neurol. Sci., suppl. 5: 25–28.Google Scholar
Innocenti, G. M.,Berbel, P. and Clarke, S. (1988). Development of projections from auditory to visual areas in the cat. J. Comp. Neurol., 272: 242–259.Google Scholar
Innocenti, G. M. and Clarke, S. (1984). Bilateral transitory projection to visual areas from auditory cortex in kittens. Brain Res., 316: 143–148.Google Scholar
Izraeli, R., Koay, G., Lamish, M., Heicklen-Klein, A. J., Heffner, H. E., Heffner, R. S., et al. (2002). Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour. Eur. J. Neurosci., 15: 693–712.Google Scholar
Jiang, J., Zhu, W., Shi, F., Liu, Y., Li, J., Qin, W., et al. (2009). Thick visual cortex in the early blind. J. Neurosci., 29: 2205–2211.Google Scholar
Kaczmarek, K., Bach-y-Rita, P., Tompkins, W. J. and Webster, J. K.A tactile visionsubstitution system for the blind: computer-controlled partial image sequencing. IEEE Trans. Biomed. Eng., 32: 602–608.
Kanwisher, N., McDermott, J. and Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci., 17: 4302–4311.Google Scholar
Karlen, S. J., Kahn, D. M. and Krubitzer, L. (2006). Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience, 142: 843–858.Google Scholar
Kennedy, H., Bullier, J. and Dehay, C. (1989). Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey. Proc. Natl. Acad. Sci. USA, 86: 8093–8097.Google Scholar
Klinge, C., Eippert, F., Röder, B. and Büchel, C. (2010). Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind. J. Neurosci., 30: 12798–12805.Google Scholar
Kujala, T., Huotilainen, M., Sinkkonen, J.,Ahonen, A. I.,Alho, K., Hämäläinen, M. S., et al. (1995). Visual cortex activation in blind humans during sound discrimination. Neurosci. Lett., 183: 143–146.Google Scholar
Kupers, R., Chebat, D. R., Madsen, K. H., Paulson, O. B. and Ptito, M. (2010). Neutral correlates of virtual route recognition in congenital blindness. Proc. Natl. Acad. Sci., 107: 12716–12721.Google Scholar
Kupers, R., Pappens, M., de Noordhout, A. M., Schoenen, J., Ptito, M. and Fumal, A. (2007). rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects. Neurology, 68: 691–693.Google Scholar
Lazzouni, L., Voss, P., and Lepore, F. (2012). Short-term cross-modal plasticity of the auditory steady-state response in blindfolded sighted individuals. Eur. J. Neurosci., 35: 1630–1636.Google Scholar
Leclerc, C., Saint-Amour, D., Lavoie, M. E., Lassonde, M. and Lepore, F. (2000). Brain functional reorganization in early blind humans revealed by auditory event-related potentials. NeuroReport, 11: 545–550.Google Scholar
Levin, N., Dumoulin, S. O., Winawer, J., Dougherty, R. F. and Wandell, B. A. (2010). Cortical maps and white matter tracts following long period of visual deprivation and retinal image restoration. Neuron, 65: 21–31.Google Scholar
Lewis, T. L. and Maurer, D. (2005). Multiple sensitive periods in human visual development: evidence from visually deprived children. Dev. Psychobiol., 46: 163–183.Google Scholar
Logothetis, N. K., Augath, M., Murayama, Y., Rauch, A., Sultan, F., Goense, J., et al. (2010). The effects of electrical microstimulation on cortical signal propagation. Nat. Neurosci., 13: 1283–1291.Google Scholar
Mahon, B. Z., Anzellotti, S., Schwarzbach, J., Zampini, M. and Caramazza, A. (2009). Category-specific organization in the human brain does not require visual experience. Neuron, 64: 292.Google Scholar
Meijer, P. B. (1992). An experimental system for auditory image representations. IEEE Trans. Biomed. Eng., 39: 112–121.Google Scholar
Merabet, L. B., Battelli, L., Obretenova, S., Maguire, S., Meijer, P. and Pascual-Leone, A. (2009). Functional recruitment of visual cortex for sound encoded object identification in blind. Neuroreport, 20: 132–138.Google Scholar
Merabet, L. B., Hamilton, R., Schlaug, G., Swisher, J. D., Kiriakopoulos, E. T., Pitskel, N. B., Kauffman, T., Pascual-Leone, A. (2008). Rapid and reversible recruitment of early visual cortex for touch. PLoS ONE, 3: e3046.Google Scholar
Merabet, L. B., Rizzo, J. F. III, Amedi, A., Somers, D. C. and Pascual-Leone, A. (2005). What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat. Rev. Neurosci., 6: 71–77.Google Scholar
Noppeney, U. (2007). The effects of visual deprivation on functional and structural organization of the human brain. Neurosci. Biobehav. Rev., 31: 1169–1180.Google Scholar
Ostrovsky, Y., and alman, A. and Sinha, P. (2006). Vision following extended congenital blindness. Psychol. Sci., 17: 1009–1014.Google Scholar
Ostrovsky, Y.,Meyers, E., Ganesh, S.,Mathur, U. and Sinha, P. (2009). Visual parsing after recovery from blindness. Psychol. Sci., 20: 1484–1491.Google Scholar
Pan, W. J., Wu, G., Li, C. X., Lin, F., Sun, J. and Lei, H. (2007). Progressive atrophy in the optic pathway and visual cortex of early blind Chinese adults: a voxel-based morphometry magnetic resonance imaging study. Neuroimage, 37: 212–220.Google Scholar
Pardue, M. T., Phillips, M. J., Hanzlicek, B., Yin, H., Chow, A. Y. and Ball, S. L. (2006). Neuroprotection of photoreceptors in the RCS rat after implantation of a subretinal implant in the superior or inferior retina. Adv. Exp. Med. Biol., 572: 321–326.Google Scholar
Park, H. J., Lee, J. D., Kim, E. Y., Park, B., Oh, M. K., Lee, S., et al. (2009). Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Neuroimage, 47: 98–106.Google Scholar
Pascual-Leone, A., Amedi, A., Fregni, F. and Merabet, L. B. (2005). The plastic human brain cortex. Ann. Rev. Neurosci., 28: 377–401.Google Scholar
Pascual-Leone, A., Cammarota, A., Wassermann, E. M., Brasil-Neto, J. P., Cohen, L. G. and Hallett, M. (1993). Modulation of motor cortical outputs to the reading hand of Braille readers. Ann. Neurol., 34: 33–37.Google Scholar
Pascual-Leone, A. and Hamilton, R. (2001). The metamodal organization of the brain. Prog. Brain Res., 134: 427–445.Google Scholar
Piche, M., Chabot, N., Bronchti, G., Miceli, D., Lepore, F. and Guillemot, J. P. (2007). Auditory responses in the visual cortex of neonatally enucleated rats. Neuroscience, 145: 1144–1156.Google Scholar
Pietrini, P., Furey, M. L., Ricciardi, E., Gobbini, M. I., Wu, W. H., Cohen, L., et al. (2004). Beyond sensory images: object-based representation in the human ventral pathway. Proc. Natl. Acad. Sci. USA, 101: 5658–5663.Google Scholar
Poirier, C., Collignon, O., Scheiber, C., Renier, L., Vanlierde, A., Tranduy, D., et al. (2006). Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage, 31: 279–285.Google Scholar
Poirier, C., De Volder, A., Tranduy, D. and Scheiber, C. (2007). Pattern recognition using a device substituting audition for vision in blindfolded sighted subjects. Neuropsychologia, 45: 1108–1121.Google Scholar
Proulx, M. J., Stoerig, P., Ludowig, E. and Knoll, I. (2008). Seeing “where” through the ears: effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution. PLOS ONE, 3: e1840.Google Scholar
Ptito, M., Schneider, F. C., Paulson, O. B. and Kupers, R. (2008). Alterations of the visual pathways in congenital blindness. Exp. Brain Res., 187: 41–49.Google Scholar
Rauschecker, J. P. and Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl. Acad. Sci. USA, 97: 11800–11806.Google Scholar
Reich, L., Szwed, M., Cohen, L. and Amedi, A. (2011). A ventral visual stream reading center independent of visual experience. Curr. Biol., 21: 363–368.Google Scholar
Renier, L. A., Anurova, I., De Volder, A. G., Carlson, S., VanMeter, J. and Rauschecker, J. P. (2010). Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron, 68: 138–148.Google Scholar
Ricciardi, E., Vanello, N., Sani, L., Gentili, C., Scilingo, E. P., Landini, L., Guazzelli, M., Bicchi, A., Haxby, J. V., and Pietrini, P. (2007). The effect of visual experience on the development of functional architecture in hMT+. Cereb. Cortex, 17: 2933–2939.Google Scholar
Rice, C. E. (1967). Human echo perception. Science, 155: 656–664.Google Scholar
Rice, C. E. and Feinstein, S. H. (1965). Sonar system of the blind: size discrimination. Science, 148: 1107–1108.Google Scholar
Rizzo, J. F. III, Wyatt, J., Loewenstein, J., Kelly, S. and Shire, D. (2003a). Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest. Ophthalmol. Vis. Sci., 44: 5355–5361.Google Scholar
Rizzo, J. F. III, 3rd Wyatt, J., Loewenstein, J., Kelly, S. and Shire, D. (2003b). Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest. Ophthalmol. Vis. Sci., 44: 5362–5369.Google Scholar
Rockland, K. S. and Ojima, H. (2003). Multisensory convergence in calcarine visual areas in macaque monkey. Int. J. Psychophysiol., 50: 19–26.Google Scholar
Röder, B., Rosler, F. and Neville, H. J. (2000). Event-related potentials during auditory language processing in congenitally blind and sighted people. Neuropsychologia, 38: 1482–1502.Google Scholar
Röder, B., Rosler, F. and Neville, H. J. (2001). Auditory memory in congenitally blind adults: a behavioral-electrophysiological investigation. Brain Res. Cogn. Brain Res., 11: 289–303.Google Scholar
Röder, B., Teder-Salejarvi, W., Sterr, A., Rosler, F., Hillyard, S. A. and Neville, H. J. (1999). Improved auditory spatial tuning in blind humans. Nature, 400: 162–166.Google Scholar
Roe, A. W., Pallas, S. L., Hahm, J. O. and Sur, M. (1990). A map of visual space induced in primary auditory cortex. Science, 250: 818–820.Google Scholar
Roe, A. W., Pallas, S. L., Kwon, Y. H. and Sur, M. (1992). Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex. J. Neurosci., 12: 3651–3664.Google Scholar
Sadato, N., Okada, T., Honda, M. and Yonekura, Y. (2002). Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage, 16: 389–400.Google Scholar
Sadato, N., Pascual-Leone, A., Grafman, J., Deiber, M. P., Ibannez, V. and Hallett, M. (1998). Neural networks for Braille reading by the blind. Brain, 121: 1213–1229.Google Scholar
Sadato, N., Pascual-Leone, A., Grafman, J., Ibannez, V., Deiber, M. P., Dold, G. and Hallett, M. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380: 526–528.Google Scholar
Saenz, M., Lewis, L. B., Huth, A. G., Fine, I. and Koch, C. (2008). Visual motion area MT+/V5 responds to auditory motion in human sight-recovery subjects. J. Neurosci., 28: 5141–5148.Google Scholar
Schiller, P. H. and Tehovnik, E. J. (2008). Visual prosthesis. Perception, 37: 1529–1559.Google Scholar
Schmidt, E. M., Bak, M. J., Hambrecht, F. T., Kufta, C. V., O'Rourke, D. K. and Vallabhanath, P. (1996). Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119: 507–522.Google Scholar
Segond, H.,Weiss, D. and Sampaio, E. (2005). Human spatial navigation via a visuo-tactile sensory substitution system. Perception, 34: 1231–1249.Google Scholar
Serino, A., Bassolino, M., Farne, A. and Ladavas, E. (2007). Extended multisensory space in blind cane users. Psychol. Sci., 18: 642–648.Google Scholar
Shimony, J. S., Burton, H., Epstein, A. A., McLaren, D. G., Sun, S. W. and Snyder, A. Z. (2006). Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb. Cortex, 16: 1653–1661.Google Scholar
Shu, N., Li, J., Li, K., Yu, C. and Jiang, T. (2009). Abnormal diffusion of cerebral white matter in early blindness. Hum. Brain Mapp., 30: 220–227.Google Scholar
Shu, N., Liu, Y., Li, J., Li, Y., Yu, C. and Jiang, T. (2009). Altered anatomical network in early blindness revealed by diffusion tensor tractography. PLoS ONE, 4: e7228.Google Scholar
Sterr, A.,Muller, M. M., Elbert, T.,Rockstroh, B., Pantev, C. and Taub, E. (1998). Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J. Neurosci., 18: 4417–4423.Google Scholar
Sterr, A., Muller, M. M., Elbert, T., Rockstroh, B. and Taub, E. (1999). Development of cortical reorganization in the somatosensory cortex of adult Braille students. Electroencephalogr. Clin. Neurophysiol. Suppl., 49: 292–298.Google Scholar
Strelow, E. R. and Brabyn, J. A. (1982). Locomotion of the blind controlled by natural sound cues. Perception., 11: 635–640.Google Scholar
Sunaert, S.,van Hecke, P., Marchal, G. and Orban, G.A. (1999). Motion-responsive regions of the human brain. Exp. Brain Res., 127: 355–370.Google Scholar
Sur, M., Garraghty, P. E. and Roe, A.W. (1988). Experimentally induced visual projections into auditory thalamus and cortex. Science, 242: 1437–1441.Google Scholar
Szczepanski, S. M., Konen, C. S. and Kastner, S. (2010). Mechanisms of spatial attention control in frontal and parietal cortex. J. Neurosci., 30: 148–160.Google Scholar
Tehovnik, E. J., Slocum, W. M., Carvey, C. E. and Schiller, P. H. (2005). Phosphene induction and the generation of saccadic eye movements by striate cortex. J. Neurophysiol., 93: 1–19.Google Scholar
Thaler, L., Arnott, S. R. and Goodale, M. A. (2011). Neural correlates of natural human echolocation in early and late blind echolocation experts. PLoS ONE, 6: e20162.Google Scholar
van Boven, R. W., Hamilton, R. H., Kauffman, T., Keenan, J. P. and Pascual-Leone, A. (2000). Tactile spatial resolution in blind Braille readers. Neurology, 54: 2230–2236.Google Scholar
Veraart, C., De Volder, A. G., Wanet-Defalque, M. C., Bol, A., Michel, C. and Goffinet, A. M. (1990). Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Res., 510: 115–121.Google Scholar
Veraart, C., Duret, F., Brelen, M., Oozeer, M. and Delbeke, J. (2004). Vision rehabilitation in the case of blindness. Exp. Rev. Med. Dev., 1: 139–153.Google Scholar
Veraart, C., Raftopoulos, C., Mortimer, J. T., Delbeke, J., Pins, D., Michaux, G., et al. (1998). Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res., 813: 181–186.Google Scholar
Veraart, C., Wanet-Defalque, M. C., Gerard, B., Vanlierde, A. and Delbeke, J. (2003). Pattern recognition with the optic nerve visual prosthesis. Artif. Organs, 27: 996–1004.Google Scholar
von Melchner, L., Pallas, S. L. and Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404: 871–876.Google Scholar
Voss, P., Gougoux, F., Zatorre, R. J., Lassonde, M. and Lepore, F. (2008). Differential occipital responses in early- and late-blind individuals during a sound-source discrimination task. Neuroimage, 40: 746–758.Google Scholar
Voss, P. and Zatorre, R. J. (in press). Occipital cortical thickness predicts performance on pitch and musical tasks in blind individuals. Cereb. Cortex.
Wan, C. Y., Wood, A. G., Reutens, D. C. and Wilson, S. J. (2010). Early but not lateblindness leads to enhanced auditory perception. Neuropsychologia, 48: 344–348.Google Scholar
Wanet-Defalque, M. C., Veraart, C., De Volder, A., Metz, R., Michel, C., Dooms, G. and Goffinet, A. (1988). High metabolic activity in the visual cortex of early blind human subjects. Brain Res., 446: 369–373.Google Scholar
Weeks, R., Horwitz, B., Aziz-Sultan, A., Tian, B., Wessinger, C. M., Cohen, L. G., et al. (2000). A positron emission tomographic study of auditory localization in the congenitally blind. J. Neurosci., 20: 2664–2672.Google Scholar
Wong, M., Gnanakumaran, V. and Goldreich, D. (2011). Tactile spatial acuity enhancement in blindness: evidence for experience-dependent mechanisms. J. Neurosci., 31: 7028–7037.Google Scholar
Yaka, R., Yinon, U. and Wollberg, Z. (1999). Auditory activation of cortical visual areas in cats after early visual deprivation. Eur. J. Neurosci., 11: 1301–1312.Google Scholar
Zrenner, E. (2002). Will retinal implants restore vision?Science, 295: 1022–1025.Google Scholar
Zrenner, E., Stett, A.,Weiss, S., Aramant, R. B., Guenther, E., Kohler, K., et al. (1999). Can subretinal microphotodiodes successfully replace degenerated photoreceptors?Vision Res., 39: 2555–2567.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×