Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T19:38:56.983Z Has data issue: false hasContentIssue false

6 - Living with One Eye: Plasticity in Visual and Auditory Systems

from II - PLASTICITY IN CHILDHOOD

Published online by Cambridge University Press:  05 January 2013

Krista R. Kelly
Affiliation:
York University
Stefania S. Moro
Affiliation:
York University
Jennifer K. E. Steeves
Affiliation:
York University
Jennifer K. E. Steeves
Affiliation:
York University, Toronto
Laurence R. Harris
Affiliation:
York University, Toronto
Get access

Summary

When we look at our environment, we immediately detect and recognize they objects, buildings, and people surrounding us. Our perception of fine detail, lines, edges, color, movement, and depth are all important for building up representations of these objects, scenes, and people. This processing occurs rapidly and is achieved effortlessly by the visual system as we take in the world with both eyes. Imagine what it might be like to not have vision through two eyes – to be completely blind. We would have to use our remaining intact sensory systems to their fullest capacity in order to interact with the world. Our senses of touch, taste, smell, and hearing would become significantly more important to allow us to connect with and understand our world.

Now instead, consider what it might be like to lose vision in only one eye. With one completely nonfunctional eye and one intact eye, our visual system would still receive light input through the intact remaining eye. So, one might ask, how could having only one eye affect our ability to see? From a systems point of view, the physical light input to our visual system would be reduced by half compared to the intact binocular visual system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkisson, J. (2006). Lost Eye: Coping with Monocular Vision after Enucleation or Loss from Cancer, Accident, or Disease. Lincoln, NE: iUniverse.
Atkinson, J. (2000). The Developing Visual Brain. New York: Oxford University Press.
Barb, S. M., Rodriguez-Galindo, C., Wilson, M. W., Phillips, N. S., Zou, P., Scoggins, M. A., Li, Y., Qaddoumi, I., Helton, K. J., Bikhazi, G., Haik, B. G. and Ogg, R. J. (2011). Functional neuroimaging to characterize visual system development in children with retinoblastoma. Invest. Ophthalmol. Vis. Sci., 52: 2619–2626.Google Scholar
Barnes, G. R., Li, X., Thompson, B., Singh, K. D., Dumoulin, S. O. and Hess, R. F. (2010). Decreased graymatter concentration in the lateral geniculate nuclei in human amblyopes. Invest. Ophthalmol. Vis. Sci., 51: 1432–1438.Google Scholar
Bowns, L., Kirshner, L. and Steinbach, M. (1994). Hemifield relative motion bias in adults monocularly enucleated at an early age. Vision Res., 34: 3389–3395.Google Scholar
Brady, F. B. (2005). A Singular View: The Art of Seeing with One Eye. Toronto: Hushion House.
Colavita, F. B. (1974). Human sensory dominance. Percept. Psychophys., 16: 409–412.Google Scholar
Colavita, F. B. and Weisberg, D. (1979). A further investigation of visual dominance. Percept. Psychophys., 25: 345–347.Google Scholar
Collignon, O., Voss, P., Lassonde, M. and Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Exp. Brain Res., 192: 343–358.Google Scholar
Daw, N. W. (2006). Visual Development. 2nd ed. New York: Springer.
Day, S. (1995). Vision development in the monocular individual: implications for the mechanisms of normal binocular vision development and the treatment of infantile esotropia. Trans. Am. Ophthalmol. Soc., XCVII: 523–581.Google Scholar
Dengis, C. A., Simpson, T., Steinbach, M. J. and Ono, H. (1998). The cyclops effect in adults: sighting without visual feedback. Vision Res., 38: 327–331.Google Scholar
Devlin, J. T., Sillery, E. L., Hall, D. A., Hobden, P., Behrens, T. E. J., Nunes, R. G., Clare, S., Matthews, P. M., Moore, D. R. and Johansen-Berg, H. (2006). Reliable identification of the auditory thalamus using multi-modal structural analyses. Neuroimage, 30: 1112–11120.Google Scholar
Du, H., Xie, B., Yu, Q. and Wang, J. (2009). Occipital lobe's cortical thinning in ametropic amblyopia. Magn. Reson. Imaging, 27: 637–640.Google Scholar
Egeth, H. E. and Sager, L. C. (1977). On the locus of visual dominance. Percept. Psychophys., 22: 77–86.Google Scholar
Ellemberg, D., Lewis, T. L., Defina, N., Maurer, D., Brent, H. P., Guillemot, J. P. and Lepore, F. (2005). Greater losses in sensitivity to second-order local motion than to first-order local motion after early visual deprivation in humans. Vision Res., 45: 2877–2884.Google Scholar
Faguet, J.,Maranhao, B., Smith, S. L. and Trachtenberg, J. T. (2009). Ipsilateral eye cortical maps are uniquely sensitive to binocular plasticity. J. Neurophysiol., 10: 855–861.Google Scholar
Goltz, H. C., Steinbach, M. J. and Gallie, B. L. (1997). Head turn in 1-eyed and normally sighted individuals during monocular viewing. Arch. Ophthalmol., 115: 748–750.Google Scholar
González, E. G., Steeves, J. K., Kraft, S. P., Gallie, B. L. and Steinbach, M. J. (2002). Foveal and eccentric acuity in one-eyed observers. Behav. Brain Res., 128: 71–80.Google Scholar
González, E. G., Steinbach, M. J., Ono, H. and Wolf, M. (1989). Depth perception in humans enucleated at an early age. Clin. Vis. Sci. 4: 173–177.Google Scholar
Guzzetta, A., D'Acunto, G., Rose, S., Tinelli, F., Boyd, R. and Cioni, G., (2010). Plasticity of the visual system after early brain damage. Dev. Med. Child Neurol., 52: 891–900.Google Scholar
Hebb, D. O. (1949). The Organization of Behaviour. New York: John Wiley and Sons.
Hess, R. F., Wang, Y.-Z., Demanins, R., Wilkinson, F. and Wilson, H. R. (1999). A deficit in strabismic amblyopia for global shape detection. Vision Res., 39: 901–914.Google Scholar
Ho, C. S., Giaschi, D. E., Boden, C., Dougherty, R., Cline, R. and Lyons, C. (2005). Deficient motion perception in the fellow eye of amblyopic children. Vision Res., 45: 1615–1627.Google Scholar
Hoover, A. E. N., Harris, L. R. and Steeves, J. K. E. (2012). Sensory compensation in sound localization in people with one eye. Exp. Brain Res., 216: 565–574.Google Scholar
Horton, J. C. and Hocking, D. R. (1998). Effect of early monocular enucleation upon ocular dominance columns and cytochrome oxidase activity in monkey and human visual cortex. Vis. Neurosci., 15: 289–303.Google Scholar
Izraeli, R., Koay, G., Lamish, M., Heicklen-Klein, A. J., Heffner, H. E., Heffner, R. S. and Wollberg, Z. (2002). Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour. Eur. J. Neurosci., 15: 693–712.Google Scholar
James, W. (1890). The Principles of Psychology. Vol. 2. New York: Holt.
Jiang, J., Zhu, W., Shi, F., Liu, Y., Li, J., Qin, W., Li, K., Yu, C. and Jiang, T. (2009). Thick visual cortex in the early blind. J. Neurosci. 29: 2205–2211.Google Scholar
Kahn, D. M. and Krubitzer, L. (2002). Massive cross-modal cortical plasticity and the emergence of a new cortical area in developmentally blind mammals. Proc. Nat. Acad. Sci. USA, 99: 11429–11434.Google Scholar
Karlen, S. J., Kahn, D. M. and Krubitzer, L. (2006). Early blindness results in abnormal corticocortical and thamlocortical connections. Neuroscience, 142: 843–858.Google Scholar
Kelly, K. R., DeSimone, K. D., Schneider, K. A. and Steeves, J. K. E. (2011). Cortical thickening of early visual areas in early monocular enucleation. J. Vis., 11: 403.Google Scholar
Kelly, K. R., Gallie, B. L. and Steeves, J. K. E. (2012). Impaired face processing in early monocular deprivation from enucleation. Optom. Vis. Sci., 89: 137–147.Google Scholar
Kelly, K. R., Schneider, K. A., Gallie, B. L. and Steeves, J. K. E. (2012). Reduced LGN volume following early visual deprivation from unilateral enucleation. J. Vis., 12: 1359.Google Scholar
Khan, A. A. (2005). Effects of monocular enucleation on the lateral geniculate nucleus (LGN) of rabbit: a qualitative light and electron microscopic study. Biomed. Res., 16: 1–5.Google Scholar
Kupers, R., Pappens, M., de Noordhout, A. M., Schoenen, J., Ptito, M. and Fumal, A. (2007). rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects. Neurology, 68: 691–693.Google Scholar
Le Grand, R., Mondloch, C. J., Maurer, D. and Brent, H. P. (2003). Expert face processing requires visual input to the right hemisphere during infancy. Nat. Neurosci., 6: 1108–1112.Google Scholar
Lessard, N., Paré, M., Lepore, F. and Lassonde, M. (1998). Early blind human subjects localize sound sources better than sighted subjects. Nature, 395: 278–280.Google Scholar
Lewis, T. L., Ellemberg, D., Maurer, D.,Wilkinson, F.,Wilson, H. R., Dirks, M. and Brent, H. P. (2002). Sensitivity to global form in glass patterns after early visual deprivation in humans. Vision Res., 42: 939–948.Google Scholar
Lewis, T. L., Maurer, D., Chung, J. Y., Holmes-Shannon, R. and van Schaik, C. S. (2000). The development of symmetrical OKN in infants: quantification based on OKN acuity for nasalward versus temporalward motion. Vision Res., 40: 445–453.Google Scholar
Lund, R. D., Land, P.W. and Boles, J. (1980). Normal and abnormal uncrossed retinotectal pathways in rats: an ERP study in adults. J. Comp. Neurol., 189: 711–720.Google Scholar
Marotta, J. J., Perrot, T. S., Nicolle, D. and Goodale, M. A. (1995). The development of adaptive head movements following enucleation. Eye, 9: 333–336.Google Scholar
Merabet, L. B., Battelli, L., Obretenova, S., Maguire, S., Meijer, P. and Pascual-Leone, A. (2009). Functional recruitment of visual cortex for sound encoded object identification in the blind. NeuroReport, 20: 132–138.Google Scholar
Moidell, B., Steinbach, M. J. and Ono, H. (1988). Egocenter location in children enucleated at an early age. Invest. Ophthalmol. Vis. Sci., 29: 1348–1351.Google Scholar
Moro, S. S. and Steeves, J. K. E. (2011). Enhanced audiovisual processing in people with one eye: unaltered by increased temporal load. 12th Ann. Int. Multisensory Res. Forum, Fukuoka, Japan.
Moro, S. S. and Steeves, J. K. E. (2012). No Colavita effect: Equal auditory and visual processing in people with one eye. Exp. Brain Res., 216: 367–373.Google Scholar
Newton, J. R., Sikes, R. W. and Skavenski, A. A. (2002). Cross-modal plasticity after monocular enucleation of the adult rabbit. Exp. Brain Res., 114: 423–429.Google Scholar
Nicholas, J., Heywood, C. A. and Cowey, A. (1996). Contrast sensitivity in one-eyed subjects. Vision Res., 26: 175–180.Google Scholar
Park, H. J., Lee, J. D., Kim, E. Y., Park, B., Oh, M. K., Lee, S. and Kim, J. J. (2009). Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Neuroimage, 47: 98–106.Google Scholar
Pirenne, M. H. (1954). Absolute visual thresholds. J. Physiol., 123: 40–41.Google Scholar
Rakic, P. (1981). Development of visual centers in the primate brain depends on binocular competition before birth. Science, 214: 928–931.Google Scholar
Reed, M. J., Steeves, J. K. E. and Steinbach, M. J. (1997). A comparison of contrast letter thresholds in monocular eye enucleated subjects and binocular and monocular control subjects. Vision Res., 37: 2465–2469.Google Scholar
Reed, M. J., Steeves, J. K. E., Steinbach, M. J., Kraft, S. and Gallie, B. (1996). Contrast letter thresholds in the non-affected eye of strabismus and unilateral eye enucleated subjects. Vision Res., 36: 3011–3018.Google Scholar
Reed, M. J., Steinbach, M. J., Anstis, S. M., Gallie, B., Smith, D. and Kraft, S. (1991). The development of optokinetic nystagmus in strabismic and monocularly enucleated subjects. Behav. Brain Res., 46: 31–42.Google Scholar
Reed, M. J., Steinbach, M. J., Ono, H., Kraft, S. and Gallie, B. (1995). Alignment ability of strabismic and eye enucleated subjects on the horizontal and oblique meridians. Vision Res., 35: 2523–2528.Google Scholar
Sathian, K. (2000). Practice makes perfect: sharper tactile perception in the blind. Am. Acad. Neurol., 54: 2203.Google Scholar
Simmers, A. J., Ledgeway, T., Hess, R. F. and McGraw, P. V. (2003). Deficits to global motion processing in human amblyopia. Vision Res., 43: 729–738.Google Scholar
Sinnett, S., Soto-Faraco, S. and Spence, C. (2008). The co-occurrence of multisensory competition and facilitation. Acta Psychol. (Amst), 128: 153–161.Google Scholar
Smith, S. L. and Trachtenberg, J. T. (2007). Experience-dependent binocular competition in the visual cortex begins at eye opening. Nat. Neurosci., 10: 370–375.Google Scholar
Spence, C. (2009). Explaining the Colavita visual dominance effect. Prog. Brain Res., 176: 245–258.Google Scholar
Spence, C., Parise, C. and Chen, Y.-C. (2011). The Colavita visual dominance effect. In Murray, M. M. and Wallace, M. (eds.), Frontiers in the Neural Bases of Multisensory Processes, pp. 523–550. Boca Raton, FL: CRC Press.
Steeves, J. K. E., González, E. G., Gallie, B. L. and Steinbach, M. J. (2002). Early monocular enucleation disrupts motion processing. Vision Res., 42: 143–150.Google Scholar
Steeves, J. K. E., González, E. G. and Steinbach, M. J. (2008). Vision with one eye: a review of visual function following monocular enucleation. Spatial Vis., 21: 509–529.Google Scholar
Steeves, J. K. E., Gray, R., Steinbach, M. J. and Regan, D. (2000). Accuracy of estimating time to collision using only monocular information in monocularly enucleated observers and monocularly viewing normal controls. Vision Res., 40: 3783–3789.Google Scholar
Steeves, J. K. E., Wilkinson, F., González, E. G.,Wilson, H. R. and Steinbach, M. J. (2004). Global shape discrimination at reduced contrast in enucleated observers. Vision Res., 44: 943–949.Google Scholar
Steinbach, M. J., Howard, I. P. and Ono, H. (1985). Monocular asymmetries in vision: we don't see eye-to-eye. Can. J. Psychol., 39: 476–478.Google Scholar
Toldi, J., Rojik, I. and Feher, O. (1994). Neonatal monocular enucleation-induced crossmodal effects observed in the cortex of adult rat. Neuroscience, 1: 105–114.Google Scholar
Toosy, A. T., Werring, D. J., Plant, G. T., Bullmore, E. T., Miller, D. H. and Thompson, A. J. (2001). Asymmetrical activation of human visual cortex demonstrated by functional MRI with monocular stimulation. Neuroimage, 14: 632–641.Google Scholar
van Brussel, L., Gerits, A. and Arckens, L. (2011). Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cerebr. Cortex, 21: 2133–2146.Google Scholar
Withington, D. J., Binns, K. E., Ingham, N. J. and Thornton, S. K. (1994). The effects of monocular enucleation on the representation of auditory space in the superior colliculus of the guinea-pig. Brain Res., 636: 348–352.Google Scholar
Withington, D. J. and McCrossan, D. (1996). Severing the intercollicularcommissure prevents bilateral disruption of the map of auditory space in the superior colliculi following monocular enucleation. Neurosci. Lett., 220: 29–32.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×