Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T22:27:58.938Z Has data issue: false hasContentIssue false

3 - Soft random solids: particulate gels, compressed emulsions, and hybrid materials

Published online by Cambridge University Press:  05 July 2014

Anthony D. Dinsmore
Affiliation:
University of Massachusetts Amherst
Jeffrey Olafsen
Affiliation:
Baylor University, Texas
Get access

Summary

Introduction

This chapter will review aspects of soft random solids, including particulate gels, compressed emulsions, and other materials having similar basic features. Soft random solids are appealing for a number of reasons – and not just because of their taste (as in foods) or appearance (as in cosmetics). They offer the potential for insight into much broader and quite elegant problems in nonequilibrium thermodynamics such as the dynamics of phase transitions, the origin of the glass transition, and stresses and flows in granular media. They are also central players in a host of industries in the form of paint, ink, concrete, asphalt, dairy foods, and cosmetics. From the range of examples and the techniques involved, it should be apparent that investigation of these materials is a multi-disciplinary process, combining contributions from physicists, chemists, and engineers.

Since the 1980s, studies of soft random solids have benefited enormously from advances in microscopy, computer-aided image analysis, computer simulations, and new methods to synthesize colloidal particles with controlled shape, surface chemistry, and interactions. The chapter's purpose is to summarize areas of recent investigations and point out experimental breakthroughs, remaining questions, and relevant experimental methods. Despite the recent progress, a number of fundamentally interesting and practically relevant questions remain, and it is hoped that this chapter will stimulate further work in these areas.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] O., Sandoval-Castilla, C., Lobato-Calleros, E., Aguirre-Mandujano, and E. J., Vernon-Carter, “Microstructure and Texture of Yogurt as Influenced by Fat Replacers,Internat. Dairy J. 14, 151 (2004).Google Scholar
[2] E. M., Herzig, K. A., White, A. B., Schofield, W. C. K., Poon, and P. S., Clegg, “Bicontinuous Emulsions Stabilized Solely by Colloidal Particles,Nature Mater 6, 966 (2007).Google Scholar
[3] V., Prasad, V., Trappe, A. D., Dinsmore, P. N., Segre, L., Cipelletti, and D. A., Weitz, “Universal Features of the Fluid to Solid Transition for Attractive Particles,Faraday Disc. 123, 1 (2003).Google Scholar
[4] J., Zhou, S., Long, Q., Wang, and A. D., Dinsmore, “Measurement of Forces inside a Three-Dimensional Pile of Frictionless Droplets,Science 312, 1631 (2006).Google Scholar
[5] D. J., Robinson and J. C., Earnshaw, “Long-Range Order in 2-Dimensional Fractal Aggregation,Phys. Rev. Lett. 71, 715 (1993).Google Scholar
[6] M. E., Cates and P. S., Clegg, “Bijels: A New Class of Soft Materials,Soft Matter 4, 2132 (2008).Google Scholar
[7] P. J., Lu, E., Zaccarelli, F., Ciulla, A. B., Schofield, F., Sciortino, and D. A., Weitz, “Gelation of Particles with Short-Range Attraction,Nature 453, 499 (2008).Google Scholar
[8] K., Stratford, R., Adhikari, I., Pagonabarraga, J. C., Desplat, and M. E., Cates, “Colloidal Jamming at Interfaces: A Route to Fluid-Bicontinuous Gels,Science 309,2198 (2005).Google Scholar
[9] A. D., Dinsmore, “Colloids – a Useful Boundary,Nature Mater 6, 921 (2007).Google Scholar
[10] R. G. M., Van der Sman and A. J., Van der Goot, “The Science of Food Structuring,Soft Matter 5, 501 (2009).Google Scholar
[11] E., Kostansek, “Controlling Particle Dispersion in Latex Paints Containing Associative Thickeners,J. Coat. Technol. Res. 4, 375 (2007).Google Scholar
[12] C., Gallegos and J. M., Franco, “Rheology of Food, Cosmetics and Pharmaceuticals,Curr. Opin. Colloid Interface Sci. 4, 288 (1999).Google Scholar
[13] R., Klajn, K. J. M., Bishop, M., Fialkowski, M., Paszewski, C. J., Campbell, T. P., Gray, and B. A., Grzybowski, “Plastic and Moldable Metals by Self-Assembly of Sticky Nanoparticle Aggregates,Science 316, 261 (2007).Google Scholar
[14] R., Klajn, T. P., Gray, P. J., Wesson, B. D., Myers, V. P., Dravid, S. K., Smoukov, and B. A., Grzybowski, “Bulk Synthesis and Surface Patterning of Nanoporous Metals and Alloys from Supraspherical Nanoparticle Aggregates,Adv. Funct. Mater. 18, 2763 (2008).Google Scholar
[15] L. G. B., Bremer, B. H., Bijsterbosch, P., Walstra, and T., Vanvliet, “Formation, Properties and Fractal Structure of Particle Gels,Adv. Colloid Interface Sci. 46, 117 (1993).Google Scholar
[16] J. A., Lucey, P. A., Munro, and H., Singh, “Rheological Properties and Microstructure of Acid Milk Gels as Affected by Fat Content and Heat Treatment,J. FoodSci. 63, 660 (1998).Google Scholar
[17] S., Ikeda, E. A., Foegeding, and T., Hagiwara, “Rheological Study on the Fractal Nature of the Protein Gel Structure,Langmuir 15, 8584 (1999).Google Scholar
[18] A., Stradner, H., Sedgwick, F., Cardinaux, W. C. K., Poon, S. U., Egelhaaf, and P., Schurtenberger, “Equilibrium Cluster Formation in Concentrated Protein Solutions and Colloids,Nature 432, 492 (2004).Google Scholar
[19] H., Sedgwick, K., Kroy, A., Salonen, M. B., Robertson, S. U., Egelhaaf, and W. C. K., Poon, “Non-Equilibrium Behavior of Sticky Colloidal Particles: Beads, Clusters and Gels,Eur.Phys.J.E 16, 77 (2005).Google Scholar
[20] P., Bezot, C., Hessebezot, B., Rousset, and C., Diraison, “Effect of Polymers on the Aggregation Kinetics and Fractal Structure of Carbon-Black Suspensions in an Aliphatic Solvent – a Static and Dynamic Light-Scattering Study,Colloid Surf. A-Physicochem. Eng. Asp. 97, 53 (1995).Google Scholar
[21] A., Kyrlidis and A., Shim, in Nip24/Digital Fabrication 2008: 24th International Conference on Digital Printing Technologies, Technical Program and Proceedings, p. 72 (2008).Google Scholar
[22] A., Shalkevich, A., Stradner, S. K., Bhat, F., Muller, and P., Schurtenberger, “Cluster, Glass, and Gel Formation and Viscoelastic Phase Separation in Aqueous Clay Suspensions,Langmuir 23, 3570 (2007).Google Scholar
[23] A., Castellanos, J. M., Valverde, and M. A. S., Quintanilla, “Physics of Compaction of Fine Cohesive Particles,Phys. Rev. Lett. 94, 075501 (2005).Google Scholar
[24] C. M., Sorensen, C., Oh, P. W., Schmidt, and T. P., Rieker, “Scaling Description of the Structure Factor of Fractal Soot Composites,Phys. Rev. E 58, 4666 (1998).Google Scholar
[25] C. M., Sorensen, B., Hageman, T. J., Rush, H., Huang, and C., Oh, “Aerogelation in a Flame Soot Aerosol,Phys. Rev. Lett. 80, 1782 (1998).Google Scholar
[26] A. S., Dorcheh and M. H., Abbasi, “Silica Aerogel; Synthesis, Properties and Characterization,J. Mater. Process. Technol. 199, 10 (2008).Google Scholar
[27] J., Fricke and A., Emmerling, “Aerogels – Preparation, Properties, Applications,Struct. Bond. 77, 37 (1992).Google Scholar
[28] C. M., Sorensen, “Light Scattering by Fractal Aggregates: A Review,Aerosol Sci. Technol. 35, 648 (2001).Google Scholar
[29] W. C. K., Poon and M. D., Haw, “Mesoscopic Structure Formation in Colloidal Aggregation and Gelation,Adv. Colloid Interface Sci. 73, 71 (1997).Google Scholar
[30] D., Asnaghi, M., Carpineti, M., Giglio, and A., Vailati, “Light-Scattering-Studies of Aggregation Phenomena,Physica A 213, 148 (1995).Google Scholar
[31] S., Manley, L., Cipelletti, V., Trappe, A. E., Bailey, R. J., Christianson, U., Gasser, V., Prasad, P. N., Segre, M. P., Doherty, S., Sankaran, A. L., Jankovsky, B., Shiley, J., Bowen, J., Eggers, C., Kurta, T., Lorik, and D. A., Weitz, “Limits to Gelation in Colloidal Aggregation,Phys. Rev. Lett. 93, 108302 (2004).Google Scholar
[32] P., Meakin, “Formation of Fractal Clusters and Networks by Irreversible Diffusion- Limited Aggregation,Phys. Rev. Lett. 51, 1119 (1983).Google Scholar
[33] M., Kolb, R., Botet, and R., Jullien, “Scaling of Kinetically Growing Clusters,Phys. Rev. Lett. 51, 1123 (1983).Google Scholar
[34] T. A., Witten Jr., and L. M., Sander, “Diffusion-Limited Aggregation: A Kinetic Critical Phenomenon,Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
[35] D. A., Weitz and M., Oliveria, “Fractal Structures Formed by Kinetic Aggregation of Aqueous Gold Colloids,Phys. Rev. Lett. 52, 1433 (1984).Google Scholar
[36] A., Thill, M., Wagner, and J. Y., Bottero, “Confocal Scanning Laser Microscopy as a Tool for the Determination of 3d Floc Structure,J. Colloid Interface Sci. 220, 465 (1999).Google Scholar
[37] M., Lattuada, H., Wu, and M., Morbidelli, “Estimation of Fractal Dimension of Colloidal Gels in the Presence of Multiple Scattering,Phys. Rev. E 64, 061404 (2001).Google Scholar
[38] R., Jullien, M., Kolb, and R., Botet, “Aggregation by Kinetic Clustering of Clusters D > 2,J. Phys. Lett. 45, L211 (1984).Google Scholar
[39] M. D., Haw, W. C. K., Poon, and P. N., Pusey, “Structure and Arrangement of Clusters in Cluster Aggregation,Phys. Rev. E 56, 1918 (1997).Google Scholar
[40] P., Meakin, “A Historical Introduction to Computer Models for Fractal Aggregates,J. Sol-Gel Sci. Technol. 15, 97 (1999).Google Scholar
[41] M., Muthukumar, “Mean-Field Theory for Diffusion-Limited Cluster Formation,Phys. Rev. Lett. 50, 839 (1983).Google Scholar
[42] C. M., Sorensen and C., Oh, “Divine Proportion Shape Preservation and the Fractal Nature of Cluster-Cluster Aggregates,Phys. Rev. E 58, 7545 (1998).Google Scholar
[43] D. A., Weitz, J. S., Huang, M. Y., Lin, and J., Sung, “Limits of the Fractal Dimension for Irreversible Kinetic Aggregation of Gold Colloids,Phys. Rev. Lett. 54, 1416 (1985).Google Scholar
[44] M. Y., Lin, H. M., Lindsay, D. A., Weitz, R. C., Ball, R., Klein, and P., Meakin, “Universality in Colloid Aggregation,Nature 339, 360 (1989).Google Scholar
[45] M. Y., Lin, H. M., Lindsay, D. A., Weitz, R., Klein, R. C., Ball, and P., Meakin, “Universal Diffusion-Limited Colloid Aggregation,J. Phys.-Condens. Matter 2, 3093 (1990).Google Scholar
[46] C. M., Sorensen and W. B., Hageman, “Two-Dimensional Soot,Langmuir 17, 5431 (2001).Google Scholar
[47] J., Bibette, T. G., Mason, H., Gang, and D. A., Weitz, “Kinetically Induced Ordering in Gelation of Emulsions,Phys. Rev. Lett. 69, 981 (1992).Google Scholar
[48] S., Havlin and R., Nossal, “Topological Properties of Percolation Clusters,J. Phys. A: Math. Gen. 17, L427 (1984).Google Scholar
[49] P., Meakin, I., Majid, S., Havlin, and H. E., Stanley, “Topological Properties of Diffusion Limited Aggregation and Cluster-Cluster Aggregation,J. Phys. A: Math. Gen. 17, L975 (1984).Google Scholar
[50] A. D., Dinsmore and D. A., Weitz, “Direct Imaging of Three-Dimensional Structure and Topology of Colloidal Gels,J. Phys. – Condens. Matter 14, 7581 (2002).Google Scholar
[51] M., Carpineti and M., Giglio, “Aggregation Phenomena,Adv. Colloid Interface Sci. 46, 73 (1993).Google Scholar
[52] L. G. B., Bremer, P., Walstra, and T., Vanvliet, “Estimations of the Aggregation Time of Various Colloidal Systems,Colloid Surf. A-Physicochem. Eng. Asp. 99, 121 (1995).Google Scholar
[53] A. S., Kyriakidis, S. G., Yiantsios, and A. J., Karabelas, “A Study of Colloidal Particle Brownian Aggregation by Light Scattering Techniques,J. Colloid Interface Sci. 195, 299 (1997).Google Scholar
[54] D. A., Weitz, J. S., Huang, M. Y., Lin, and J., Sung, “Dynamics of Diffusion-Limited Kinetic Aggregation,Phys. Rev. Lett. 53, 1657 (1984).Google Scholar
[55] W. B., Russel, D. A., Saville, and W., Schowalter, Colloidal Dispersions (Cambridge University Press, 1989).Google Scholar
[56] D. A., Weitz and M. Y., Lin, “Dynamic Scaling of Cluster-Mass Distributions in Kinetic Colloid Aggregation,Phys. Rev. Lett. 57, 2037 (1986).Google Scholar
[57] M., Broide and R., Cohen, “Experimental Evidence of Dynamic Scaling in Colloidal Aggregation,Phys. Rev. Lett. 64, 2026 (1990).Google Scholar
[58] D. W., Schaefer, J. E., Martin, P., Wiltzius, and D. S., Cannell, “Fractal Geometry of Colloidal Aggregates,Phys. Rev. Lett. 52, 2371 (1984).Google Scholar
[59] C., Aubert and D. S., Canell, “Restructuring of Colloidal Silica Aggregates,Phys. Rev. Lett. 56, 738 (1986).Google Scholar
[60] M., Kolb and R., Jullien, “Chemically Limited Versus Diffusion Limited Aggregation,J. Physique Lett. 45, L977 (1984).Google Scholar
[61] P., Meakin and F., Family, “Structure and Kinetics of Reaction-Limited Aggregation,Phys. Rev. A 38, 2110 (1988).Google Scholar
[62] C. S., Wen and L. Z., Zhang, “Rate of Coagulation of Brownian Particles in the Presence of a Double Layer,J. Colloid Interface Sci. 188, 372 (1997).Google Scholar
[63] A., Vaccaro, J., Sefcik, and M., Morbidelli, “Characterization of Colloidal Polymer Particles through Stability Ratio Measurements,Polymer 46, 1157 (2005).Google Scholar
[64] J. C., Crocker, “Measurement of the Hydrodynamic Corrections to the Brownian Motion of Two Colloidal Spheres,J. Chem. Phys. 106, 2837 (1997).Google Scholar
[65] S. K., Sainis, V., Germain, and E. R., Dufresne, “Statistics of Particle Trajectories at Short Time Intervals Reveal fN-Scale Colloidal Forces,Phys. Rev. Lett. 99, 018303 (2007).Google Scholar
[66] H., Tanaka and T., Araki, “Simulation Method of Colloidal Suspensions with Hydrodynamic Interactions: Fluid Particle Dynamics,Phys. Rev. Lett. 85, 1338 (2000).Google Scholar
[67] C., Allan, M., Cloitre, and M., Wafra, “Aggregation and Sedimentation in Colloidal Suspensions,Phys. Rev. Lett. 74, 1478 (1995).Google Scholar
[68] P., Dimon, S. K., Sinha, D. A., Weitz, C. R., Safinya, G. S., Smith, W. A., Varady, and H. M., Lindsay, “Structure of Aggregated Gold Colloids,Phys. Rev. Lett. 57, 595 (1986).Google Scholar
[69] L., Cipelletti, S., Manley, R. C., Ball, and D. A., Weitz, “Universal Aging Features in Restructuring of Fractal Colloidal Gels,Phys. Rev. Lett. 84, 2275 (2000).Google Scholar
[70] J. M., Jin, K., Parbhakar, L. H., Dao, and K. H., Lee, “Gel Formation by Reversible Cluster-Cluster Aggregation,Phys. Rev. E 54, 997 (1996).Google Scholar
[71] S. D., Orrite, S., Stoll, and P., Schurtenberger, “Off-Lattice Monte Carlo Simulations of Irreversible and Reversible Aggregation Processes,Soft Matter 1, 364 (2005).Google Scholar
[72] J. R., Savage, D. W., Blair, A. J., Levine, R. A., Guyer, and A. D., Dinsmore, “Imaging the Sublimation Dynamics of Colloidal Crystallites,Science 314, 795 (2006).Google Scholar
[73] J. R., Savage and A. D., Dinsmore, “Experimental Evidence for Two-Step Nucleation in Colloidal Crystallization,Phys. Rev. Lett. 102, 198302 (2009).Google Scholar
[74] J. N., Israelachvili, Intermolecular and Surface Forces (Academic Press, Amsterdam, 2003).Google Scholar
[75] J. P., Pantina and E. M., Furst, “Elasticity and Critical Bending Moment of Model Colloidal Aggregates,Phys. Rev. Lett. 94, 138301 (2005).Google Scholar
[76] A. D., Dinsmore, V., Prasad, I. Y., Wong, and D. A., Weitz, “Microscopic Structure and Elasticity of Weakly Aggregated Colloidal Gels,Phys. Rev. Lett. 96, 185502 (2006).Google Scholar
[77] J., Bibette, T. G., Mason, G., Hu, D. A., Weitz, and P., Poulin, “Structure of Adhesive Emulsions,Langmuir 9, 3352 (1993).Google Scholar
[78] J. N., Wilking, S. M., Graves, C. B., Chang, K., Meleson, M. Y., Lin, and T. G., Mason, “Dense Cluster Formation During Aggregation and Gelation of Attractive Slippery Nanoemulsion Droplets,Phys. Rev. Lett. 96, 015501 (2006).Google Scholar
[79] R., Penfold, A. D., Watson, A. R., Mackie, and D. J., Hibberd, “Quantitative Imaging of Aggregated Emulsions,Langmuir 22, 2005 (2006).Google Scholar
[80] C. R., Seager and T. G., Mason, “Slippery Diffusion-Limited Aggregation,Phys. Rev. E 75, 011406 (2007).Google Scholar
[81] E. H. A., de Hoog, W. K., Kegel, A., van Blaaderen, and H. N. W., Lekkerkerker, “Direct Observation of Crystallization and Aggregation in a Phase-Separating Colloid-Polymer Suspension,Phys. Rev. E 6402, 021407 (2001).Google Scholar
[82] H., Brenner, “The Slow Motion of a Sphere through a Viscous Fluid Towards a Plane Surface,Chem. Eng. Sci. 16, 242 (1961).Google Scholar
[83] J. Y., Walz and L., Suresh, “Study of Sedimentation of a Single Particle toward a Flat Plate,J. Chem. Phys. 103, 10714 (1995).Google Scholar
[84] A. J., Archer and N. B., Wilding, “Phase Behavior of a Fluid with Competing Attractive and Repulsive Interactions,Phys. Rev. E 76, 031501 (2007).Google Scholar
[85] H., Sedgwick, S. U., Egelhaaf, and W. C. K., Poon, “Clusters and Gels in Systems of Sticky Particles,J. Phys.-Condens. Matter 16, S4913 (2004).Google Scholar
[86] A. I., Campbell, V. J., Anderson, J. S., van Duijneveldt, and P., Bartlett, “Dynamical Arrest in Attractive Colloids: The Effect of Long-Range Repulsion,Phys. Rev. Lett. 94, 208301 (2005).Google Scholar
[87] R., Sanchez and P., Bartlett, “Equilibrium Cluster Formation and Gelation,J. Phys.-Condens. Matter 17, S3551 (2005).Google Scholar
[88] T., Ohtsuka, C. P., Royall, and H., Tanaka, “Local Structure and Dynamics in Colloidal Fluids and Gels,EPL 84, 46002 (2008).Google Scholar
[89] C., Haro-Perez, L. F., Rojas-Ochoa, R., Castaneda-Priego, M., Quesada-Perez, J., Callejas-Fernandez, R., Hidalgo-Alvarez, and V., Trappe, “Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities,Phys. Rev. Lett. 102, 018301 (2009).Google Scholar
[90] J., Groenewold and W. K., Kegel, “Anomalously Large Equilibrium Clusters of Colloids,J. Phys. Chem. B 105, 11702 (2001).Google Scholar
[91] J., Groenewold and W. K., Kegel, “Colloidal Cluster Phases, Gelation and Nuclear Matter,J. Phys.-Condens. Matter 16, S4877 (2004).Google Scholar
[92] P. N., Segre, V., Prasad, A. B., Schofield, and D. A., Weitz, “Glasslike Kinetic Arrest at the Colloidal-Gelation Transition,Phys. Rev. Lett. 86, 6042 (2001).Google Scholar
[93] P. J., Lu, J. C., Conrad, H. M., Wyss, A. B., Schofield, and D. A., Weitz, “Fluids of Clusters in Attractive Colloids,Phys. Rev. Lett. 96, 028306 (2006).Google Scholar
[94] F., Sciortino, S., Mossa, E., Zaccarelli, and P., Tartaglia, “Equilibrium Cluster Phases and Low-Density Arrested Disordered States: The Role of Short-Range Attraction and Long-Range Repulsion,Phys. Rev. Lett. 93, 055701 (2004).Google Scholar
[95] M. A., Glaser, G. M., Grason, R. D., Kamien, A., Kosmrlj, C. D., Santangelo, and P., Ziherl, “Soft Spheres Make More Mesophases,EPL 78, 46004 (2007).Google Scholar
[96] A. J., Archer, “Two-Dimensional Fluid with Competing Interactions Exhibiting Microphase Separation: Theory for Bulk and Interfacial Properties,Phys. Rev. E 78, 031402 (2008).Google Scholar
[97] A. J., Archer, C., Ionescu, D., Pini, and L., Reatto, “Theory for the Phase Behaviour of a Colloidal Fluid with Competing Interactions,J. Phys.-Condens. Matter 20, 415106 (2008).Google Scholar
[98] A., Mohraz, E. R., Weeks, and J. A., Lewis, “Structure and Dynamics of Biphasic Colloidal Mixtures,Phys. Rev. E 77, 060403 (2008).Google Scholar
[99] V., Trappe and D. A., Weitz, “Scaling of the Viscoelasticity of Weakly Attractive Particles,Phys. Rev. Lett. 85, 449 (2000).Google Scholar
[100] Y., Kantor and I., Webman, “Elastic Properties of Random Percolating Systems,Phys. Rev. Lett. 52, 1891 (1984).Google Scholar
[101] H. S., Ma, J. H., Prevost, and G. W., Scherer, “Elasticity of DLCA Model Gels with Loops,Int. J. Solids Struc. 39, 4605 (2002).Google Scholar
[102] R., Buscall, P. D. A., Mills, J. W., Goodwin, and D. W., Lawson, “Scaling Behaviorof the Rheology of Aggregate Networks Formed from Colloidal Particles,J. Chem. Soc.–Faraday Trans. I 84, 4249 (1988).Google Scholar
[103] W.-H., Shih, W. Y., Shih, S.-I., Kim, J., Lu, and I. A., Aksay, “Scaling Behavior of the Elastic Properties of Colloidal Gels,Phys. Rev. A 42, 4772 (1990).Google Scholar
[104] L. G. B., Bremer and T., Vanvliet, “The Modulus of Particle Networks with Stretched Strands,Rheologica Acta 30, 98 (1991).Google Scholar
[105] R., de Rooij, D., Vandenende, M. H. G., Duits, and J., Mellema, “Elasticity of Weakly Aggregating Polystyrene Latex Dispersions,Phys. Rev. E 49, 3038 (1994).Google Scholar
[106] A. A., Potanin and W. B., Russel, “Fractal Model of Consolidation of Weakly Aggregated Colloidal Dispersions,Phys. Rev. E 53, 3702 (1996).Google Scholar
[107] W., Wolthers, D., van den Ende, V., Breedveld, M. H. G., Duits, A. A., Potanin, R. H. W., Wientjes, and J., Mellema, “Linear Viscoleastic Behavior of Aggregated Colloidal Dispersions,Phys. Rev. E 56, 5726 (1997).Google Scholar
[108] H. S., Ma, A. P., Roberts, J. H., Prevost, R., Jullien, and G. W., Scherer, “Mechanical Structure–Property Relationship of Aerogels,J. Non-Cryst. Solids 277, 127 (2000).Google Scholar
[109] S., Manley, B., Davidovitch, N. R., Davies, L., Cipelletti, A. E., Bailey, R. J., Christianson, U., Gasser, V., Prasad, P. N., Segre, M. P., Doherty, S., Sankaran, A. L., Jankovsky, B., Shiley, J., Bowen, J., Eggers, C., Kurta, T., Lorik, and D. A., Weitz, “Time-Dependent Strength of Colloidal Gels,Phys. Rev. Lett. 95, 048302 (2005).Google Scholar
[110] T. G., Mason and D. A., Weitz, “Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids,Phys. Rev. Lett. 74, 1250 (1995).Google Scholar
[111] J. C., Crocker, M. T., Valentine, E. R., Weeks, T., Gisler, P. D., Kaplan, A. G., Yodh, and D. A., Weitz, “Two-Point Microrheology of Inhomogeneous Soft Materials,Phys. Rev. Lett. 85, 888 (2000).Google Scholar
[112] P., Cicuta and A. M., Donald, “Microrheology: A Review of the Method and Applications,Soft Matter 3, 1449 (2007).Google Scholar
[113] A. H., Krall and D. A., Weitz, “Internal Dynamics and Elasticity of Fractal Colloidal Gels,Phys. Rev. Lett. 80, 778 (1998).Google Scholar
[114] M. C., Grant and W. B., Russel, “Volume-Fraction Dependence of Elastic Moduli and Transition Temperatures for Colloidal Silica Gels,Phys. Rev. E 47, 2606 (1993).Google Scholar
[115] V., Trappe, V., Prasad, L., Cipelletti, P. N., Segre, and D. A., Weitz, “Jamming Phase Diagram for Attractive Particles,Nature 411, 772 (2001).Google Scholar
[116] J. W., Cahn, “Spinodal Decomposition (the 1967 Institute of Metals Lecture),Trans. Metal. Soc. AIME 242, 166 (1967).Google Scholar
[117] J., Nyvlt, “The Ostwald Rule of Stages,Crystal Research and Technology 30, 443 (1995).Google Scholar
[118] P. R., ten Wolde and D., Frenkel, “Homogeneous Nucleation and the Ostwald Step Rule,PCCPPhys. Chem. Chem. Phys. 1, 2191 (1999).Google Scholar
[119] H., Schmalzried, “On the Equilibration of Solid Phases. Some Thoughts on Ostwalds Contributions,Z. Phys. Chemie 217, 1281 (2003).Google Scholar
[120] S. J. L., Billinge, “How Do Your Crystals Grow?,Nat. Phys. 5, 13 (2009).Google Scholar
[121] S. Y., Chung, Y. M., Kim, J. G., Kim, and Y. J., Kim, “Multiphase Transformation and Ostwald's Rule of Stages During Crystallization of a Metal Phosphate,Nat. Phys. 5, 68 (2009).Google Scholar
[122] J., Bergenholtz, M., Fuchs, and T., Voigtmann, “Colloidal Gelation and Non-Ergodicity Transitions,J. Phys.-Condens. Matter 12, 6575 (2000).Google Scholar
[123] K. N., Pham, A. M., Puertas, J., Bergenholtz, S. U., Egelhaaf, A., Moussaid, P. N., Pusey, A. B., Schofield, M. E., Cates, M., Fuchs, and W. C. K., Poon, “Multiple Glassy States in a Simple Model System,Science 296, 104 (2002).Google Scholar
[124] V., Trappe and P., Sandkuhler, “Colloidal Gels – Low-Density Disordered Solid-Like States,Curr. Opin. Colloid Interface Sci. 8, 494 (2004).Google Scholar
[125] M. E., Cates, M., Fuchs, K., Kroy, W. C. K., Poon, and A. M., Puertas, “Theory and Simulation of Gelation, Arrest and Yielding in Attracting Colloids,J. Phys.- Condens. Matter 16, S4861 (2004).Google Scholar
[126] S., Manley, H. M., Wyss, K., Miyazaki, J. C., Conrad, V., Trappe, L. J., Kaufman, D. R., Reichman, and D. A., Weitz, “Glasslike Arrest in Spinodal Decomposition as a Route to Colloidal Gelation,Phys. Rev. Lett. 95, 238302 (2005).Google Scholar
[127] E., Zaccarelli, “Colloidal Gels: Equilibrium and Non-Equilibrium Routes,J. Phys.-Condens. Matter 19, 323101 (2007).Google Scholar
[128] D. C., Viehman and K. S., Schweizer, “Theory of Gelation, Vitrification, and Activated Barrier Hopping in Mixtures of Hard and Sticky Spheres,J. Chem. Phys. 128, 084509 (2008).Google Scholar
[129] V. J., Anderson and H. N. W., Lekkerkerker, “Insights into Phase Transition Kinetics from Colloid Science,Nature 416, 811 (2002).Google Scholar
[130] S. M., Ilett, A., Orrock, W. C. K., Poon, and P. N., Pusey, “Phase Behavior of a Model Colloid-Polymer Mixture,Phys. Rev. E 51, 1344 (1995).Google Scholar
[131] W. C. K., Poon, F., Renth, R. M. L., Evans, D. J., Fairhurst, M. E., Cates, and P. N., Pusey, “Colloid-Polymer Mixtures at Triple Coexistence: Kinetic Maps from Free-Energy Landscapes,Phys. Rev. Lett. 83, 1239 (1999).Google Scholar
[132] M. G., Noro and D., Frenkel, “Extended Corresponding-States Behavior for Particles with Variable Range Attractions,J. Chem. Phys. 113, 2941 (2000).Google Scholar
[133] A. E., Bailey, W. C. K., Poon, R. J., Christianson, A. B., Schofield, U., Gasser, V., Prasad, S., Manley, P. N., Segre, L., Cipelletti, W. V., Meyer, M. P., Doherty, S., Sankaran, A. L., Jankovsky, W. L., Shiley, J. P., Bowen, J. C., Eggers, C., Kurta, T., Lorik, P. N., Pusey, and D. A., Weitz, “Spinodal Decomposition in a Model Colloid-Polymer Mixture in Microgravity,Phys. Rev. Lett. 99, 205701 (2007).Google Scholar
[134] P., Bolhuis and D., Frenkel, “Prediction of an Expanded-to-Condensed Transition in Colloidal Crystals,Phys. Rev. Lett. 72, 2211 (1994).Google Scholar
[135] D., Frenkel, “Colloidal Encounters: A Matter of Attraction,Science 314, 768 (2006).Google Scholar
[136] N. A. M., Verhaegh, D., Asnaghi, H. N. W., Lekkerkerker, M., Giglio, and L., Cipelletti, “Transient Gelation by Spinodal Decomposition in Colloid-Polymer Mixtures,Physica A 242, 104 (1997).Google Scholar
[137] M., Carpineti and M., Giglio, “Spinodal-Type Dynamics in Fractal Aggregation of Colloidal Clusters,Phys. Rev. Lett. 68, 3327 (1992).Google Scholar
[138] M. D., Haw, M., Sievwright, W. C. K., Poon, and P. N., Pusey, “Structure and Characteristic Length Scales in Cluster-Cluster Aggregation Simulation,Physica A 217, 231 (1995).Google Scholar
[139] H., Huang, C., Oh, and C. M., Sorensen, “Structure Factor Scaling in Aggregating Systems,Phys. Rev. E 57, 875 (1998).Google Scholar
[140] W. C. K., Poon, A. D., Pirie, and P. N., Pusey, “Gelation in Colloid-Polymer Mixtures,Faraday Discussions 101, 65 (1995).Google Scholar
[141] R. K., Pathria, Statistical Mechanics (Elsevier, Oxford, 1994).Google Scholar
[142] E., Zaccarelli, P. J., Lu, F., Ciulla, D. A., Weitz, and F., Sciortino, “Gelation as Arrested Phase Separation in Short-Ranged Attractive Colloid-Polymer Mixtures,J. Phys.-Condens. Matter 20, 494242 (2008).Google Scholar
[143] R. M. L., Evans and W. C. K., Poon, “Diffusive Evolution of Stable and Metastable Phases: 2. Theory of Nonequilibrium Behavior in Colloid-Polymer Mixtures,Phys. Rev. E 56, 5748 (1997).Google Scholar
[144] W. C. K., Poon, F., Renth, and R. M. L., Evans, “Kinetics from Free-Energy Landscapes – How to Turn Phase Diagrams into Kinetic Maps,J. Phys.-Condens. Matter 12, A269 (2000).Google Scholar
[145] R. M. L., Evans, W. C. K., Poon, and F., Renth, “Classification of Ordering Kinetics in Three-Phase Systems,Phys. Rev. E 64, 031403 (2001).Google Scholar
[146] P. R., ten Wolde and D., Frenkel, “Enhancement of Protein Crystal Nucleation by Critical Density Fluctuations,Science 277, 1975 (1997).Google Scholar
[147] H., Tanaka, T., Koyama, and T., Araki, “Network Formation in Viscoelastic Phase Separation,J. Phys.-Condens. Matter 15, S387 (2003).Google Scholar
[148] H., Chung, K., Ohno, T., Fukuda, and R. J., Composto, “Self-Regulated Structures in Nanocomposites by Directed Nanoparticle Assembly,Nano Lett. 5, 1878 (2005).Google Scholar
[149] P. S., Clegg, E. M., Herzig, A. B., Schofield, S. U., Egelhaaf, T. S., Horozov, B. P., Binks, M. E., Cates, and W. C. K., Poon, “Emulsification of Partially Miscible Liquids Using Colloidal Particles: Nonspherical and Extended Domain Structures,Langmuir 23, 5984 (2007).Google Scholar
[150] P. S., Clegg, “Fluid-Bicontinuous Gels Stabilized by Interfacial Colloids: Low and High Molecular Weight Fluids,J. Phys.-Condens. Matter 20, S3433 (2008).Google Scholar
[151] P., Pieranski, “Two-Dimensional Interfacial Colloidal Crystals,Phys. Rev. Lett. 45, 569 (1980).Google Scholar
[152] H., Firoozmand, B. S., Murray, and E., Dickinson, “Interfacial Structuring in a Phase-Separating Mixed Biopolymer Solution Containing Colloidal Particles,Langmuir 25, 1300 (2009).Google Scholar
[153] E., Kim, K., Stratford, R., Adhikari, and M. E., Cates, “Arrest of Fluid Demixing by Nanoparticles: A Computer Simulation Study,Langmuir 24, 6549 (2008).Google Scholar
[154] M. J. A., Hore and M., Laradji, “Microphase Separation Induced by Interfacial Segregation of Isotropic, Spherical Nanoparticles,J. Chem. Phys. 126, 244903 (2007).Google Scholar
[155] T. G., Mason, J., Bibette, and D. A., Weitz, “Elasticity of Compressed Emulsions,Phys. Rev. Lett. 75, 2051 (1995).Google Scholar
[156] J., Brujic, S. F., Edwards, D. V., Grinev, I., Hopkinson, D., Brujic, and H. A., Makse, “3d Bulk Measurements of the Force Distribution in a Compressed Emulsion System,Faraday Discuss. 123, 207 (2003).Google Scholar
[157] J., Brujic, S. F., Edwards, I., Hopkinson, and H. A., Makse, “Measuring the Distribution of Interdroplet Forces in a Compressed Emulsion System,Physica A 327, 201 (2003).Google Scholar
[158] J., Brujic, C. M., Song, P., Wang, C., Briscoe, G., Marty, and H. A., Makse, “Measuring the Coordination Number and Entropy of a 3d Jammed Emulsion Packing by Confocal Microscopy,Phys. Rev. Lett. 98, 248001 (2007).Google Scholar
[159] J., Zhou, S., Long, Q., Wang, and A. D., Dinsmore, “Correction to Zhou et alScience 314, 254 (2006).Google Scholar
[160] M., Clusel, E. I., Corwin, A. O. N., Siemens, and J., Brujic, “A ‘Granocentric’ Model for Random Packing of Jammed Emulsions,Nature 460, 611 (2009).Google Scholar
[161] H. M., Jaeger, S. R., Nagel, and R. P., Behringer, “Granular Solids, Liquids, and Gases,Rev. Mod. Phys. 68, 1259 (1996).Google Scholar
[162] C. H., Liu, S. R., Nagel, D. A., Schecter, S. N., Coppersmith, S., Majumdar, O., Narayan, and T. A., Witten, “Force Fluctuations in Bead Packs,Science 269, 513 (1995).Google Scholar
[163] T. S., Majmudar and R. P., Behringer, “Contact Force Measurements and Stress-Induced Anisotropy in Granular Materials,Nature 435, 1079 (2005).Google Scholar
[164] J. F., Geng, D., Howell, E., Longhi, R. P., Behringer, G., Reydellet, L., Vanel, E., Clement, and S., Luding, “Footprints in Sand: The Response of a Granular Material to Local Perturbations,Phys. Rev. Lett. 87, 035506 (2001).Google Scholar
[165] A. J., Liu and S. R., Nagel, “Nonlinear Dynamics – Jamming Is Not Just Cool Any More,Nature 396, 21 (1998).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×