Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T23:03:09.927Z Has data issue: false hasContentIssue false

3 - Neurogenetics of dementia

Published online by Cambridge University Press:  31 July 2009

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Foundation, Minnesota
Get access

Summary

The molecular era of human genetics began in 1983 when an intrepid group of clinicians and scientists led by James Gusella and Nancy Wexler mapped the gene mutation that causes Huntington's disease (HD) to the short arm of human chromosome 4. In the 25 years since this discovery, the new field of human neurogenetics has provided an unprecedented explosion in our molecular understanding of dementia. Aided by the “completion” of the Human Genome Project, scientists continue to discover new gene mutations that cause rare but highly penetrant familial dementia syndromes. The study of these genes and the proteins they encode have provided us with plausible hypotheses for the biochemical underpinnings of these rare diseases as well as the more common syndromes to which they are related.

Traditional disease gene discovery has been performed through the processes of “linkage analysis” and “positional cloning.” These methods make no a priori assumptions about the biochemical function of the protein corresponding to the mutant gene but instead rely upon the discovery of the physical location of the mutation on one of the chromosomes. They require the phenotypic characterization of one or more large families through which the disease phenotype segregates. In general, larger families provide more genetic information through the number of meiotic recombination events. Genetic material from each available member of the family is scored for a panel of DNA polymorphisms, or “markers”, spanning each human chromosome.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gusella, J. F., Wexler, N. S., Conneally, P. M.et al. A polymorphic DNA marker genetically linked to Huntington's disease. Nature, 1983; 306(5940): 234–8.CrossRefGoogle ScholarPubMed
Botstein, D. and Risch, N.. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet, 2003; 33(Suppl): 228–37.CrossRefGoogle ScholarPubMed
Strachan, T. and Read, A. P.. Human Molecular Genetics 3, 3rd edn. London: Garland Press, 2004.Google Scholar
Lander, E. S., Linton, L. M., Birren, B.et al. Initial sequencing and analysis of the human genome. Nature, 2001; 409(6822): 860–921.CrossRefGoogle ScholarPubMed
Venter, J. C., Adams, M. D., Myers, E. W.et al. The sequence of the human genome. Science, 2001; 291(5507): 1304–51.CrossRefGoogle ScholarPubMed
Blennow, K., Leon, M. J. and Zetterberg, H.. Alzheimer's disease. Lancet, 2006; 368(9533): 387–403.CrossRefGoogle ScholarPubMed
Pulst, S.-M.Contemporary Neurology Series: Neurogenetics. New York: Oxford University Press, 2000.Google Scholar
Hirst, C., Yee, I. M. and Sadovnick, A. D.. Familial risks for Alzheimer disease from a population-based series. Genet Epidemiol, 1994; 11(4): 365–74.CrossRefGoogle ScholarPubMed
Hocking, L. B. and Breitner, J. C.. Cumulative risk of Alzheimer-like dementia in relatives of autopsy-confirmed cases of Alzheimer's disease. Dementia, 1995; 6(6): 355–6.Google ScholarPubMed
Farrer, L. A., O'Sullivan, D. M., Cupples, L. A., Growdon, J. H. and Myers, R. H.. Assessment of genetic risk for Alzheimer's disease among first-degree relatives. Ann Neurol, 1989; 25(5): 485–93.CrossRefGoogle ScholarPubMed
Lai, F. and Williams, R. S.. A prospective study of Alzheimer disease in Down syndrome. Arch Neurol, 1989; 46(8): 849–53.CrossRefGoogle ScholarPubMed
Burger, P. C. and Vogel, F. S.. The development of the pathologic changes of Alzheimer's disease and senile dementia in patients with Down's syndrome. Am J Pathol, 1973; 73(2): 457–76.Google ScholarPubMed
Glenner, G. G. and Wong, C. W.. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun, 1984; 120(3): 885–90.CrossRefGoogle ScholarPubMed
Masters, C. L., Multhaup, G., Simms, G.et al. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. Embo J, 1985; 4(11): 2757–63.Google ScholarPubMed
Masters, C. L., Simms, G., Weinman, N. A.et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA, 1985; 82(12): 4245–9.CrossRefGoogle ScholarPubMed
Robakis, N. K., Ramakrishna, N., Wolfe, G., and Wisniewski, H. M.. Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci USA, 1987; 84(12): 4190–4.CrossRefGoogle ScholarPubMed
Tanzi, R. E., Gusella, J. F., Watkins, P. C.et al. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science, 1987; 235(4791): 880–4.CrossRefGoogle ScholarPubMed
Kang, J., Lemaire, H. G., Unterbeck, A.et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987; 325(6106): 733–6.CrossRefGoogle ScholarPubMed
Goldgaber, D., Lerman, M. I., McBride, O. W., Saffiotti, U. and Gajdusek, D. C.. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science, 1987; 235(4791): 877–80.CrossRefGoogle ScholarPubMed
Yoshikai, S., Sasaki, H., Doh-ura, K., Furuya, H. and Sakaki, Y.. Genomic organization of the human amyloid beta-protein precursor gene. Gene, 1990; 87(2): 257–63.CrossRefGoogle ScholarPubMed
Tanaka, S., Nakamura, S., Ueda, K.et al. Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer's disease. Biochem Biophys Res Commun, 1988; 157(2): 472–9.CrossRefGoogle ScholarPubMed
Levy, E., Carman, M. D., Fernandez-Madrid, I. J.et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science, 1990; 248(4959): 1124–6.CrossRefGoogle ScholarPubMed
Goate, A., Chartier-Harlin, M. C., Mullan, M.et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 1991; 349(6311): 704–6.CrossRefGoogle ScholarPubMed
Sherrington, R., Rogaev, E. I., Liang, Y.et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 1995; 375(6534): 754–60.CrossRefGoogle ScholarPubMed
Levy-Lahad, E., Wijsman, E. M., Nemens, E.et al. A familial Alzheimer's disease locus on chromosome 1. Science, 1995; 269(5226): 970–3.CrossRefGoogle ScholarPubMed
Herreman, A., Hartmann, D., Annaert, W.et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci USA, 1999; 96(21): 11872–7.CrossRefGoogle ScholarPubMed
Janssen, J. C., Beck, J. A., Campbell, T. A.et al. Early onset familial Alzheimer's disease: Mutation frequency in 31 families. Neurology, 2003; 60(2): 235–9.CrossRefGoogle Scholar
Lampe, T. H., Bird, T. D., Nochlin, D.et al. Phenotype of chromosome 14-linked familial Alzheimer's disease in a large kindred. Ann Neurol, 1994; 36(3): 368–78.CrossRefGoogle Scholar
Lippa, C. F., Swearer, J. M., Kane, K. J.et al. Familial Alzheimer's disease: site of mutation influences clinical phenotype. Ann Neurol, 2000; 48(3): 376–9.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Lopera, F., Ardilla, A., Martinez, A.et al. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA 1997; 277(10): 793–9.CrossRefGoogle Scholar
Ikeda, M., Sharma, V., Sumi, S. M.et al. The clinical phenotype of two missense mutations in the presenilin I gene in Japanese patients. Ann Neurol, 1996; 40(6): 912–7.CrossRefGoogle ScholarPubMed
Axelman, K., Basun, H., and Lannfelt, L.. Wide range of disease onset in a family with Alzheimer disease and a His163Tyr mutation in the presenilin-1 gene. Arch Neurol, 1998; 55(5): 698–702.CrossRefGoogle Scholar
Bird, T. D., Levy-Lahad, E., Poorkaj, P.et al. Wide range in age of onset for chromosome 1-related familial Alzheimer's disease. Ann Neurol, 1996; 40(6): 932–6.CrossRefGoogle ScholarPubMed
Strooper, B.Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron, 2003; 38(1): 9–12.CrossRefGoogle Scholar
Duff, K., Eckman, C., Zehr, C.et al. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature, 1996; 383(6602): 710–3.CrossRefGoogle ScholarPubMed
Scheuner, D., Eckman, C., Jensen, M.et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med, 1996; 2(8): 864–70.CrossRefGoogle ScholarPubMed
Donoviel, D. B., Hadjantonakis, A. K., Ikeda, M.et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev, 1999; 13(21): 2801–10.CrossRefGoogle ScholarPubMed
Shen, J., Bronson, R. T., Chen, D. F.et al. Skeletal and CNS defects in presenilin-1-deficient mice. Cell, 1997; 89(4): 629–39.CrossRefGoogle Scholar
Pericak-Vance, M. A., Bebout, J. L., Gaskell, Jr. P. C.et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum Genet, 1991; 48(6): 1034–50.Google ScholarPubMed
Corder, E. H., Saunders, A. M., Strittmatter, W. J.et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 1993; 261(5123): 921–3.CrossRefGoogle ScholarPubMed
Saunders, A. M., Strittmatter, W. J., Schmechel, D.et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology, 1993; 43(8): 1467–72.CrossRefGoogle ScholarPubMed
Strittmatter, W. J., Saunders, A. M., Schmechel, D.et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA, 1993; 90(5): 1977–81.CrossRefGoogle ScholarPubMed
Bertram, L., McQueen, M. B., Mullin, K., Blacker, D. and Tanzi, R. E.. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet, 2007; 39(1): 17–23.CrossRefGoogle ScholarPubMed
Blacker, D., Haines, J. L., Rodes, L.et al. ApoE-4 and age at onset of Alzheimer's disease: the NIMH genetics initiative. Neurology, 1997; 48(1): 139–47.CrossRefGoogle ScholarPubMed
Corder, E. H., Saunders, A. M., Risch, N. J.et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet, 1994; 7(2): 180–4.CrossRefGoogle ScholarPubMed
Talbot, C., Lendon, C., Craddock, N.et al. Protection against Alzheimer's disease with apoE epsilon 2. Lancet, 1994; 343(8910): 1432–3.CrossRefGoogle ScholarPubMed
West, H. L., Rebeck, G. W. and Hyman, B. T.. Frequency of the apolipoprotein E epsilon 2 allele is diminished in sporadic Alzheimer disease. Neurosci Lett, 1994; 175(1–2): 46–8.CrossRefGoogle ScholarPubMed
Bales, K. R., Verina, T., Cummins, D. J.et al. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. Proc Natl Acad Sci USA, 1999; 96(26): 15233–8.CrossRefGoogle ScholarPubMed
LaDu, M. J., Falduto, M. T., Manelli, A. M.et al. Isoform-specific binding of apolipoprotein E to beta-amyloid. J Biol Chem, 1994; 269(38): 23403–6.Google ScholarPubMed
Nathan, B. P., Bellosta, S., Sanan, D. A.et al. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science, 1994; 264(5160): 850–2.CrossRefGoogle ScholarPubMed
Goldman, J. S., Farmer, J. M., Wood, E. M.et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology, 2005; 65(11): 1817–9.CrossRefGoogle ScholarPubMed
Hutton, M., Lendon, C. L., Rizzu, P.et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 1998; 393(6686): 702–5.CrossRefGoogle ScholarPubMed
Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. and Crowther, R. A.. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron, 1989; 3(4): 519–26.CrossRefGoogle ScholarPubMed
Hasegawa, M., Smith, M. J. and Goedert, M.. Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett, 1998; 437(3): 207–10.CrossRefGoogle Scholar
Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V.et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science, 1998; 282(5395): 1914–17.CrossRefGoogle ScholarPubMed
Heutink, P., Stevens, M., Rizzu, P.et al. Hereditary frontotemporal dementia is linked to chromosome 17q21–q22: a genetic and clinicopathological study of three Dutch families. Ann Neurol, 1997; 41(2): 150–9.CrossRefGoogle ScholarPubMed
Wszolek, Z. K., Pfeiffer, R. F., Bhatt, M. H.et al. Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Ann Neurol, 1992; 32(3): 312–20.CrossRefGoogle ScholarPubMed
Lindquist, S. G., Holm, I. E., Schwartz, M.et al. Alzheimer disease-like clinical phenotype in a family with FTDP-17 caused by a MAPT R406W mutation. Eur J Neurol, 2008; 15(4): 377–85.CrossRefGoogle Scholar
Ostojic, J., Elfgren, C., Passant, U.et al. The tau R406W mutation causes progressive presenile dementia with bitemporal atrophy. Dement Geriatr Cogn Disord, 2004; 17(4): 298–301.CrossRefGoogle ScholarPubMed
Ghetti, B., Murrell, J. R., Zolo, P., Spillantini, M. G. and Goedert, M.. Progress in hereditary tauopathies: a mutation in the tau gene (G389R) causes a Pick disease-like syndrome. Ann N Y Acad Sci, 2000; 920: 52–62.CrossRefGoogle Scholar
Rossi, G., Marelli, C., Farina, L.et al. The G389R mutation in the MAPT gene presenting as sporadic corticobasal syndrome. Mov Disord, 2008; 23(6): 892–5.CrossRefGoogle ScholarPubMed
Poorkaj, P., Muma, N. A., Zhukareva, V.et al. An R5L tau mutation in a subject with a progressive supranuclear palsy phenotype. Ann Neurol, 2002; 52(4): 511–16.CrossRefGoogle Scholar
Ros, R., Thobois, S., Streichenberger, N.et al. A new mutation of the tau gene, G303V, in early-onset familial progressive supranuclear palsy. Arch Neurol, 2005; 62(9): 1444–50.CrossRefGoogle ScholarPubMed
Doerflinger, H., Benton, R., Shulman, J. M. and St Johnston, D.. The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development, 2003; 130(17): 3965–75.CrossRefGoogle ScholarPubMed
Harada, A., Oguchi, K., Okabe, S.et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature, 1994; 369(6480): 488–91.CrossRefGoogle ScholarPubMed
Takei, Y., Teng, J., Harada, A. and Hirokawa, N.. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol, 2000; 150(5): 989–1000.CrossRefGoogle ScholarPubMed
Jackson, G. R., Wiedau-Pazos, M., Sang, T. K.et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron, 2002; 34(4): 509–19.CrossRefGoogle ScholarPubMed
Ramsden, M., Kotilinek, L., Forster, C.et al. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci, 2005; 25(46): 10637–47.CrossRefGoogle Scholar
Santacruz, K., Lewis, J., Spires, T.et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science, 2005; 309(5733): 476–81.CrossRefGoogle Scholar
Watts, G. D., Wymer, J., Kovach, M. J.et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet, 2004; 36(4): 377–81.CrossRefGoogle ScholarPubMed
Guyant-Marechal, L., Laquerriere, A., Duyckaerts, C.et al. Valosin-containing protein gene mutations: clinical and neuropathologic features. Neurology, 2006; 67(4): 644–51.CrossRefGoogle Scholar
Forman, M. S., Mackenzie, I. R., Cairns, N. J.et al. Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. J Neuropathol Exp Neurol, 2006; 65(6): 571–81.CrossRefGoogle ScholarPubMed
Neumann, M., Mackenzie, I. R., Cairns, N. J.et al. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol, 2007; 66(2): 152–7.CrossRefGoogle ScholarPubMed
Wang, Q., Song, C. and Li, C. C.. Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol, 2004; 146(1–2): 44–57.CrossRefGoogle ScholarPubMed
Ruden, D. M., Sollars, V., Wang, X.et al. Membrane fusion proteins are required for oskar mRNA localization in the Drosophila egg chamber. Dev Biol, 2000; 218(2): 314–25.CrossRefGoogle ScholarPubMed
Higashiyama, H., Hirose, F., Yamaguchi, M.et al. Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration. Cell Death Differ, 2002; 9(3): 264–73.CrossRefGoogle ScholarPubMed
Boeddrich, A., Gaumer, S., Haacke, A.et al. An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. Embo J, 2006; 25(7): 1547–58.CrossRefGoogle ScholarPubMed
Skibinski, G., Parkinson, N. J., Brown, J. M.et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet, 2005; 37(8): 806–8.CrossRefGoogle ScholarPubMed
Gydesen, S., Brown, J. M., Brun, A.et al. Chromosome 3 linked frontotemporal dementia (FTD-3). Neurology, 2002; 59(10): 1585–94.CrossRefGoogle Scholar
Momeni, P., Rogaeva, E., Deerlin, V.et al. Genetic variability in CHMP2B and frontotemporal dementia. Neurodegener Dis, 2006; 3(3): 129–33.CrossRefGoogle ScholarPubMed
Zee, J., Urwin, H., Engelborghs, S.et al. CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Hum Mol Genet, 2008; 17(2): 313–22.Google ScholarPubMed
Lee, J. A., Beigneux, A., Ahmad, S. T., Young, S. G. and Gao, F. B.. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol, 2007; 17(18): 1561–7.CrossRefGoogle ScholarPubMed
Cruts, M., Gijselinck, I., Zee, J.et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature, 2006; 442(7105): 920–4.CrossRefGoogle ScholarPubMed
Baker, M., Mackenzie, I. R., Pickering-Brown, S. M.et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 2006; 442(7105): 916–19.CrossRefGoogle ScholarPubMed
Rademakers, R., Cruts, M., Dermaut, B.et al. Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval. Mol Psychiatry, 2002; 7(10): 1064–74.CrossRefGoogle ScholarPubMed
Mackenzie, I. R., Baker, M., West, G.et al. A family with tau-negative frontotemporal dementia and neuronal intranuclear inclusions linked to chromosome 17. Brain, 2006; 129(Pt 4): 853–67.CrossRefGoogle ScholarPubMed
Rosso, S. M., Kamphorst, W., Graaf, B.et al. Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–22. Brain, 2001; 124(Pt 10): 1948–57.CrossRefGoogle ScholarPubMed
Kertesz, A., Kawarai, T., Rogaeva, E.et al. Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Neurology, 2000; 54(4): 818–27.CrossRefGoogle ScholarPubMed
Lendon, C. L., Lynch, T., Norton, J.et al. Hereditary dysphasic disinhibition dementia: a frontotemporal dementia linked to 17q21–22. Neurology, 1998; 50(6): 1546–55.CrossRefGoogle ScholarPubMed
He, Z. and Bateman, A.. Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med, 2003; 81(10): 600–12.CrossRefGoogle ScholarPubMed
Hrabal, R., Chen, Z., James, S., Bennett, H. P. and Ni, F.. The hairpin stack fold, a novel protein architecture for a new family of protein growth factors. Nat Struct Biol, 1996; 3(9): 747–52.CrossRefGoogle ScholarPubMed
Bateman, A., Belcourt, D., Bennett, H., Lazure, C. and Solomon, S.. Granulins, a novel class of peptide from leukocytes. Biochem Biophys Res Commun, 1990; 173(3): 1161–8.CrossRefGoogle ScholarPubMed
Daniel, R., Daniels, E., He, Z. and Bateman, A.. Progranulin (acrogranin/PC cell-derived growth factor/granulin-epithelin precursor) is expressed in the placenta, epidermis, microvasculature, and brain during murine development. Dev Dyn, 2003; 227(4): 593–9.CrossRefGoogle ScholarPubMed
Suzuki, M. and Nishiahara, M.. Granulin precursor gene: a sex steroid-inducible gene involved in sexual differentiation of the rat brain. Mol Genet Metab, 2002; 75(1): 31–7.CrossRefGoogle ScholarPubMed
Suzuki, M., Yoshida, S., Nishihara, M. and Takahashi, M.. Identification of a sex steroid-inducible gene in the neonatal rat hypothalamus. Neurosci Lett, 1998; 242(3): 127–30.CrossRefGoogle Scholar
Gass, J., Cannon, A., Mackenzie, I. R.et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet, 2006; 15(20): 2988–3001.CrossRefGoogle ScholarPubMed
Snowden, J. S., Pickering-Brown, S. M., Mackenzie, I. R.et al. Progranulin gene mutations associated with frontotemporal dementia and progressive non-fluent aphasia. Brain, 2006; 129(Pt 11): 3091–102.CrossRefGoogle Scholar
Masellis, M., Momeni, P., Meschino, W.et al. Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain, 2006; 129(Pt 11): 3115–23.CrossRefGoogle ScholarPubMed
Mesulam, M., Johnson, N., Krefft, T. A.et al. Progranulin mutations in primary progressive aphasia: the PPA1 and PPA3 families. Arch Neurol, 2007; 64(1): 43–7.CrossRefGoogle ScholarPubMed
Davion, S., Johnson, N., Weintraub, S.et al. Clinicopathologic correlation in PGRN mutations. Neurology, 2007; 69(11): 1113–21.CrossRefGoogle ScholarPubMed
Mackenzie, I. R., Baker, M., Pickering-Brown, S.et al. The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain, 2006; 129(Pt 11): 3081–90.CrossRefGoogle ScholarPubMed
Neumann, M., Sampathu, D. M., Kwong, L. K.et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006; 314(5796): 130–3.CrossRefGoogle ScholarPubMed
Zee, J., Ber, I., Maurer-Stroh, S.et al. Mutations other than null mutations producing a pathogenic loss of progranulin in frontotemporal dementia. Hum Mutat, 2007; 28(4): 416.Google Scholar
Polymeropoulos, M. H., Higgins, J. J., Golbe, L. I.et al. Mapping of a gene for Parkinson's disease to chromosome 4q21–q23. Science, 1996; 274(5290): 1197–9.CrossRefGoogle ScholarPubMed
Polymeropoulos, M. H., Lavedan, C., Leroy, E.et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 1997; 276(5321): 2045–7.CrossRefGoogle ScholarPubMed
Kahle, P. J., Neumann, M., Ozmen, L.et al. Subcellular localization of wild-type and Parkinson's disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci, 2000; 20(17): 6365–73.CrossRefGoogle ScholarPubMed
Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C.et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol, 2004; 55(2): 164–73.CrossRefGoogle ScholarPubMed
Kruger, R., Kuhn, W., Muller, T.et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet, 1998; 18(2): 106–8.CrossRefGoogle ScholarPubMed
Spillantini, M. G., Schmidt, M. L., Lee, V. M.et al. Alpha-synuclein in Lewy bodies. Nature, 1997; 388(6645): 839–40.CrossRefGoogle ScholarPubMed
Abeliovich, A., Schmitz, Y., Farinas, I.et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 2000; 25(1): 239–52.CrossRefGoogle ScholarPubMed
Singleton, A. B., Farrer, M., Johnson, J.et al. Alpha-synuclein locus triplication causes Parkinson's disease. Science, 2003; 302(5646): 841.CrossRefGoogle ScholarPubMed
Ibanez, P., Bonnet, A. M., Debarges, B.et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet, 2004; 364(9440): 1169–71.CrossRefGoogle ScholarPubMed
Chartier-Harlin, M. C., Kachergus, J., Roumier, C.et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet, 2004; 364(9440): 1167–9.CrossRefGoogle ScholarPubMed
Chiba-Falek, O. and Nussbaum, R. L.. Effect of allelic variation at the NACP-Rep1 repeat upstream of the alpha-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system. Hum Mol Genet, 2001; 10(26): 3101–9.CrossRefGoogle Scholar
Maraganore, D. M., Andrade, M., Elbaz, A.et al. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 2006; 296(6): 661–70.CrossRefGoogle ScholarPubMed
Kitada, T., Asakawa, S., Hattori, N.et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998; 392(6676): 605–8.CrossRefGoogle Scholar
Valente, E. M., Abou-Sleiman, P. M., Caputo, V.et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 2004; 304(5674): 1158–60.CrossRefGoogle ScholarPubMed
Leroy, E., Boyer, R., Auburger, G.et al. The ubiquitin pathway in Parkinson's disease. Nature, 1998; 395(6701): 451–2.CrossRefGoogle ScholarPubMed
Bonifati, V., Rizzu, P., Baren, M. J.et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003; 299(5604): 256–9.CrossRefGoogle ScholarPubMed
Paisan-Ruiz, C., Jain, S., Evans, E. W.et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron, 2004; 44(4): 595–600.CrossRefGoogle ScholarPubMed
Zimprich, A., Biskup, S., Leitner, P.et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 2004; 44(4): 601–7.CrossRefGoogle ScholarPubMed
Giasson, B. I., Covy, J. P., Bonini, N. M.et al. Biochemical and pathological characterization of Lrrk2. Ann Neurol, 2006; 59(2): 315–22.CrossRefGoogle ScholarPubMed
Ross, O. A., Toft, M., Whittle, A. J.et al. Lrrk2 and Lewy body disease. Ann Neurol, 2006; 59(2): 388–93.CrossRefGoogle ScholarPubMed
Healy, D. G., Falchi, M., O'Sullivan, S. S.et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case–control study. Lancet Neurol, 2008; 7(7): 583–90.CrossRefGoogle Scholar
West, A. B., Moore, D. J., Biskup, S.et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA, 2005; 102(46): 16842–7.CrossRefGoogle ScholarPubMed
Lewis, P. A., Greggio, E., Beilina, A.et al. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun, 2007; 357(3): 668–71.CrossRefGoogle Scholar
Tuite, P. J., Clark, H. B., Bergeron, C.et al. Clinical and pathologic evidence of corticobasal degeneration and progressive supranuclear palsy in familial tauopathy. Arch Neurol, 2005; 62(9): 1453–7.CrossRefGoogle ScholarPubMed
Baker, M., Litvan, I., Houlden, H.et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet, 1999; 8(4): 711–15.CrossRefGoogle ScholarPubMed
Spillantini, M. G., Yoshida, H., Rizzini, C.et al. A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann Neurol, 2000; 48(6): 939–43.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Gajdusek, D. C., Gibbs, C. J. and Alpers, M.. Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature, 1966; 209(5025): 794–6.CrossRefGoogle ScholarPubMed
Gibbs, C. J., , D. C.Gajdusek, , Asher, D. M.et al. Creutzfeldt–Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science, 1968; 161(839): 388–9.CrossRefGoogle ScholarPubMed
Roos, R., Gajdusek, D. C. and Gibbs, Jr. C. J.The clinical characteristics of transmissible Creutzfeldt–Jakob disease. Brain, 1973; 96(1): 1–20.Google ScholarPubMed
Prusiner, S. B.Novel proteinaceous infectious particles cause scrapie. Science, 1982; 216(4542): 136–44.CrossRefGoogle ScholarPubMed
Bendheim, P. E., Bockman, J. M., McKinley, M. P., Kingsbury, D. T. and Prusiner, S. B.. Scrapie and Creutzfeldt–Jakob disease prion proteins share physical properties and antigenic determinants. Proc Natl Acad Sci USA, 1985; 82(4): 997–1001.CrossRefGoogle ScholarPubMed
Hsiao, K., Baker, H. F., Crow, T. J.et al. Linkage of a prion protein missense variant to Gerstmann–Straussler syndrome. Nature, 1989; 338(6213): 342–5.CrossRefGoogle ScholarPubMed
Owen, F., Poulter, M., Lofthouse, R.et al. Insertion in prion protein gene in familial Creutzfeldt–Jakob disease. Lancet, 1989; 1(8628): 51–2.CrossRefGoogle ScholarPubMed
Goldfarb, L. G., Petersen, R. B., Tabaton, M.et al. Fatal familial insomnia and familial Creutzfeldt–Jakob disease: disease phenotype determined by a DNA polymorphism. Science, 1992; 258(5083): 806–8.CrossRefGoogle ScholarPubMed
Medori, R., Tritschler, H. J., LeBlanc, A.et al. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N Engl J Med, 1992; 326(7): 444–9.CrossRefGoogle ScholarPubMed
Vanik, D. L. and Surewicz, W. K.. Disease-associated F198S mutation increases the propensity of the recombinant prion protein for conformational conversion to scrapie-like form. J Biol Chem, 2002; 277(50): 49065–70.CrossRefGoogle ScholarPubMed
Zahn, R., Liu, A., Luhrs, T.et al. NMR solution structure of the human prion protein. Proc Natl Acad Sci USA, 2000; 97(1): 145–50.CrossRefGoogle ScholarPubMed
Zhang, Y., Swietnicki, W., Zagorski, M. G., Surewicz, W. K. and Sonnichsen, F. D.. Solution structure of the E200K variant of human prion protein. Implications for the mechanism of pathogenesis in familial prion diseases. J Biol Chem, 2000; 275(43): 33650–4.CrossRefGoogle ScholarPubMed
Zimmermann, K., Turecek, P. L. and Schwarz, H. P.. Genotyping of the prion protein gene at codon 129. Acta Neuropathol, 1999; 97(4): 355–8.CrossRefGoogle ScholarPubMed
Tanaka, Y., Minematsu, K., Moriyasu, H.et al. A Japanese family with a variant of Gerstmann–Straussler–Scheinker disease. J Neurol Neurosurg Psychiatry, 1997; 62(5): 454–7.CrossRefGoogle ScholarPubMed
Hsiao, K., Scott, M., Foster, D.et al. Spontaneous neurodegeneration in transgenic mice with prion protein codon 101 proline–leucine substitution. Ann N Y Acad Sci, 1991; 640: 166–70.CrossRefGoogle ScholarPubMed
Kahana, E., Zilber, N. and Abraham, M.. Do Creutzfeldt–Jakob disease patients of Jewish Libyan origin have unique clinical features?Neurology, 1991; 41(9): 1390–2.CrossRefGoogle ScholarPubMed
Mead, S.Prion disease genetics. Eur J Hum Genet, 2006; 14(3): 273–81.CrossRefGoogle ScholarPubMed
Owen, F., Poulter, M., Shah, T.et al. An in-frame insertion in the prion protein gene in familial Creutzfeldt–Jakob disease. Brain Res Mol Brain Res, 1990; 7(3): 273–6.CrossRefGoogle ScholarPubMed
Rowe, D. B., Lewis, V., Needham, M.et al. Novel prion protein gene mutation presenting with subacute PSP-like syndrome. Neurology, 2007; 68(11): 868–70.CrossRefGoogle ScholarPubMed
Croes, E. A., Theuns, J., Houwing-Duistermaat, J. J.et al. Octapeptide repeat insertions in the prion protein gene and early onset dementia. J Neurol Neurosurg Psychiatry, 2004; 75(8): 1166–70.CrossRefGoogle ScholarPubMed
Lee, H. S., Brown, P., Cervenakova, L.et al. Increased susceptibility to kuru of carriers of the PRNP 129 methionine/methionine genotype. J Infect Dis, 2001; 183(2): 192–6.CrossRefGoogle ScholarPubMed
Cervenakova, L., Goldfarb, L. G., Garruto, R.et al. Phenotype–genotype studies in kuru: implications for new variant Creutzfeldt–Jakob disease. Proc Natl Acad Sci USA, 1998; 95(22): 13239–41.CrossRefGoogle ScholarPubMed
Palmer, M. S., Dryden, A. J., Hughes, J. T. and Collinge, J.. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt–Jakob disease. Nature, 1991; 352(6333): 340–2.CrossRefGoogle ScholarPubMed
Zeidler, M., Stewart, G., Cousens, S. N., Estibeiro, K. and Will, R. G.. Codon 129 genotype and new variant CJD. Lancet, 1997; 350(9078): 668.CrossRefGoogle ScholarPubMed
,The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell, 1993; 72(6): 971–83.
Kremer, B., Goldberg, P., Andrew, S. E.et al. A worldwide study of the Huntington's disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med, 1994; 330(20): 1401–6.CrossRefGoogle ScholarPubMed
Rubinsztein, D. C., Leggo, J., Coles, R.et al. Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats. Am J Hum Genet, 1996; 59(1): 16–22.Google ScholarPubMed
Merrit, A. D., Conneally, P. M., Rahman, N. F. and Drew, A. L.. Juvenile Huntington's chorea. In Progress in Neurogenetics, A. Barbeau and Brunnette, J. R.. (eds.). Amsterdam: Excerpta Medica Foundation, 1969: 645–650.Google Scholar
Ridley, R. M., Frith, C. D., Crow, T. J. and Conneally, P. M.. Anticipation in Huntington's disease is inherited through the male line but may originate in the female. J Med Genet, 1988; 25(9): 589–95.CrossRefGoogle ScholarPubMed
Andrew, S. E., Goldberg, Y. P., Kremer, B.et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet, 1993; 4(4): 398–403.CrossRefGoogle ScholarPubMed
Duyao, M., Ambrose, C., Myers, R.et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet, 1993; 4(4): 387–92.CrossRefGoogle ScholarPubMed
Snell, R. G., MacMillan, J. C., Cheadle, J. P.et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet, 1993; 4(4): 393–7.CrossRefGoogle ScholarPubMed
Kremer, B., Almqvist, E., Theilmann, J.et al. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes. Am J Hum Genet, 1995; 57(2): 343–50.Google ScholarPubMed
Strong, T. V., Tagle, D. A., Valdes, J. M.et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nat Genet, 1993; 5(3): 259–65.CrossRefGoogle ScholarPubMed
Sharp, A. H., Loev, S. J., Schilling, G.et al. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron, 1995; 14(5): 1065–74.CrossRefGoogle ScholarPubMed
Duyao, M. P., Auerbach, A. B., Ryan, A.et al. Inactivation of the mouse Huntington's disease gene homolog Hdh. Science, 1995; 269(5222): 407–10.CrossRefGoogle ScholarPubMed
Nasir, J., Floresco, S. B., O'Kusky, J. R.et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell, 1995; 81(5): 811–23.CrossRefGoogle ScholarPubMed
Zeitlin, S., Liu, J. P., Chapman, D. L., Papaioannou, V. E. and Efstratiadis, A.. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat Genet, 1995; 11(2): 155–63.CrossRefGoogle ScholarPubMed
Mangiarini, L., Sathasivam, K., Seller, M.et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 1996; 87(3): 493–506.CrossRefGoogle Scholar
Reddy, P. H., Williams, M., Charles, V.et al. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet, 1998; 20(2): 198–202.CrossRefGoogle ScholarPubMed
Shelbourne, P. F., Killeen, N., Hevner, R. F.et al. A Huntington's disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Hum Mol Genet, 1999; 8(5): 763–74.CrossRefGoogle ScholarPubMed
Lin, C. H., Tallaksen-Greene, S., Chien, W. M.et al. Neurological abnormalities in a knock-in mouse model of Huntington's disease. Hum Mol Genet, 2001; 10(2): 137–44.CrossRefGoogle Scholar
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. and Finkbeiner, S.. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature, 2004; 431(7010): 805–10.CrossRefGoogle ScholarPubMed
Saudou, F., Finkbeiner, S., Devys, D. and Greenberg, M. E.. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell, 1998; 95(1): 55–66.CrossRefGoogle Scholar
,Finishing the euchromatic sequence of the human genome. Nature, 2004; 431(7011): 931–45.
,International HapMap Consortium. A haplotype map of the human genome. Nature, 2005; 437(7063): 1299–320.CrossRef
Coon, K. D., Myers, A. J., Craig, D. W.et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer's disease. J Clin Psychiatry, 2007; 68(4): 613–18.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×