Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T09:17:25.794Z Has data issue: false hasContentIssue false

27 - Ovarian Hyperstimulation Syndrome

from PART II - INFERTILITY EVALUATION AND TREATMENT

Published online by Cambridge University Press:  04 August 2010

Botros R. M. B. Rizk
Affiliation:
University of South Alabama
Juan A. Garcia-Velasco
Affiliation:
Rey Juan Carlos University School of Medicine,
Hassan N. Sallam
Affiliation:
University of Alexandria School of Medicine
Antonis Makrigiannakis
Affiliation:
University of Crete
Get access

Summary

INTRODUCTION

Ovarian hyperstimulation syndrome (OHSS) is an iatrogenic complication of ovulation induction, which may cause serious impact on the patient's health, with 0.1–2 percent of the patients developing severe forms of the syndrome (1). This low incidence is increasing worldwide through the expansion of assisted reproductive techniques (ART) (2). Generally speaking, OHSS is a consequence of exogenous gonadotropin/clomiphene citrate administration for ovulation induction – restoring ovulation in anovulatory patients through pharmacological induction of two or three follicles – and more frequently for aggressive controlled ovarian hyperstimulation (COH) used in ART, trying to increase the cohort of follicles achieving maturation in normal ovulatory women. This potentially life-threatening disorder causes massive extracellular exudate accumulation combined with profound intravascular volume depletion and hemoconcentration, accompanied by ovarian enlargement with exaggerated esteroidogenesis and multiple system failure as end point (3).

There are many hormonal variables that are closely related to the pathophysiology of OHSS syndrome, perhaps the most important of which is whether being exogenous or endogenous (e.g., pregnancy derived) (4,5). Elimination of hCG will prevent the full-blown picture of OHSS. In fact, when hCG was replaced for progesterone as luteal support in ovulation induction (OI) or COH, the incidence of OHSS was reduced, maintaining excellent pregnancy rates (6). If hCG is used for luteal phase support, the risk of OHSS is enhanced.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Navot, D., Bergh, P.A., Laufer, N. Ovarian hyperstimulation syndrome in novel reproductive technologies: prevention and treatment. Fertility and Sterility (1992), 58, 249–61.Google ScholarPubMed
Rizk, B. Epidemiology of ovarian hyperstimulation syndrome: iatrogenic and spontaneous. In Rizk, B., (Ed.), Ovarian Hyperstimulation Syndrome. Cambridge, New YorkCambridge University Press (2006), Chapter 2, pp. 10–42.Google Scholar
Balasch, J., Fabregues, F., Arroyo, V. Peripheral arterial vasodilation hypothesis: a new insight into the pathogenesis of ovarian hyperstimulation syndrome. Human Reproduction, (1998) 13, 2718–30.CrossRefGoogle ScholarPubMed
Rizk, B. Pathophysiology of hyperstimulation syndrome. In Rizk, B., (Ed.), Ovarian Hyperstimulation Syndrome. Cambridge, New YorkCambridge University Press (2006), Chapter 3, pp. 43–78.Google Scholar
Rizk, B. Ovarian hyperstimulation syndrome. In (Studd, J., Ed.), Progress in Obstetrics and Gynecology, Volume 11. EdinburghChurchill Livingtone (1993a), Chapter 18, pp. 311–49.Google Scholar
McClure, N., Leya, J., Radwanska, E., Rawlins, R., Haning, R.V. Luteal phase support and severe ovarian hyperstimulation syndrome. Human Reproduction, (1992) 7, 758–64.CrossRefGoogle ScholarPubMed
Zalel, Y., Orvieto, R., Ben-Rafael, Z., Homburg, R., Fisher, O., Insler, V. Recurrent spontaneous ovarian hyperstimulation syndrome associated with polycystic ovary syndrome. Gynecologic Endocrinology, (1995) 9, 313–5.CrossRefGoogle ScholarPubMed
Cappa, F., Pasqua, C., Tobia, M., Ventura, T. Ascites and hydrothorax due to endogenous hyperstimulation of H.C.G. in a case of hydatidiform mole destruens with secondary irreversible kidney insufficiency due to disseminated intravascular coagulation. Rivista Italiana di Ginecologia, (1976) 56, 363–8.Google Scholar
Guvenal, F., Guvenal, T., Timuroglu, Y., Timuroglu, T., Cetin, M. Spontaneous ovarian hyperstimulation-like reaction caused by primary hypothyroidism. Acta Obstetricia et Gynecologica Scandinavica, (2006) 85, 124–5.CrossRefGoogle ScholarPubMed
Smits, G., Olatunbosun, O., Delbaere, A., Pierson, R., Vassart, G., Costagliola, S. Ovarian hyperstimulation syndrome due to a mutation in the follicle-stimulating hormone receptor. New England Journal of Medicine, (2003) 21, 760–6.CrossRefGoogle Scholar
Vasseur, C., Rodien, P., Beau, I., Desroches, A., Gerard, C., Poncheville, L., Chaplot, S., Savagner, F., Croue, A., Mathieu, E., Lahlou, N., Descamps, P., Misrahi, M. A chorionic gonadotropin-sensitive mutation in the follicle-stimulating hormone receptor as a cause of familial gestational spontaneous ovarian hyperstimulation syndrome. New England Journal of Medicine, (2003) 21, 753–9.CrossRefGoogle Scholar
Montanelli, L., Delbaere, A., Di Carlo, C., Nappi, C., Smits, G., Vassart, G., Costagliola, S. A mutation in the follicle-stimulating hormone receptor as a cause of familial spontaneous ovarian hyperstimulation syndrome. The Journal of Clinical Endocrinology and Metabolism, (2004a)89, 1255–8.CrossRefGoogle ScholarPubMed
Montanelli, L., Durme, J.J., Smits, G., Bonomi, M., Rodien, P., Devor, E.J., Moffat-Wilson, K., Pardo, L., Vassart, G., Costagliola, S. Modulation of ligand selectivity associated with activation of the transmembrane region of the human follitropin receptor. Molecular Endocrinology, (2004b)18, 2061–73.CrossRefGoogle ScholarPubMed
Delbaere, A., Smits, G., Leener, A., Costagliola, S., Vassart, G. Understanding ovarian hyperstimulation syndrome. Endocrine, (2005) 26, 285–90.CrossRefGoogle ScholarPubMed
Kihara, M., Sugita, T., Nagai, Y., Saeki, N., Tatsuno, I., Seki, K. Ovarian hyperstimulation caused by gonadotroph cell adenoma: a case report and review of the literature. Gynecological Endocrinology, (2006) 22, 110–3.CrossRefGoogle ScholarPubMed
Lyons, C.A., Wheeler, C.A., Frishman, G.N., Hackett, R.J., Seifer, D.B., Haning, R.V. Jr. Early and late presentation of the ovarian hyperstimulation syndrome: two distinct entities with different risk factors. Human Reproduction, (1994) 9, 792–9.CrossRefGoogle ScholarPubMed
Pellicer, A., Albert, C., Mercader, A., Bonilla-Musoles, F., Remohí, J., Simón, C. The pathogenesis of ovarian hyperstimulation syndrome: in vivo studies investigating the role of interleukin-1α, interleukin-6, and vascular endothelial growth factor. Fertility and Sterility, (1999) 71, 482–9.CrossRefGoogle Scholar
Rizk, B., Aboulghar, M. Modern management of ovarian hyperstimulation syndrome. Human Reproduction (1991) 6, 1082–7.CrossRefGoogle ScholarPubMed
Schenker, J.G., Weinstein, D. Ovarian hyperstimulation syndrome: a current survey. Fertility and Sterility, (1978) 30, 255–68.Google ScholarPubMed
Knox, G.E. Antihistimine blockade of the ovarian hyperstimulation syndrome. American Journal of Obstetrics and Gynecology, (1974) 118, 992–4.CrossRefGoogle Scholar
Navot, D., Margalioth, E.J., Laufer, N., Birkenfeld, A., Relou, A., Rosler, A., Schenker, J.G. Direct correlation between plasma renin activity and severity of the ovarian hyperstimulation syndrome. Fertility and Sterility, (1987) 48, 57–61.CrossRefGoogle ScholarPubMed
Loret de Mola, J.R., Baumgardner, G.P., Goldfarb, J.E., Friedlander, M.A. Ovarian hyperstimulation syndrome: preovulatory serum concentrations of interleukin-6, interleukin-1 receptor antagonist and tumor necrosis factor-α cannot predict its occurrence. Human Reproduction, (1996) 7, 1377–80.CrossRefGoogle Scholar
Aboulghar, M.A., Mansour, R.T., Serour, G.I., Elhelw, B.A., Shaarawy, M. Elevated levels of angiogenin in serum and ascitic fluid from patients with severe ovarian hyperstimulation syndrome. Human Reproduction, (1998) 13, 2068–71.CrossRefGoogle Scholar
Magini, A., Granchi, S., Orlando, C., Vannelli, G.B., Pellegrini, S., Milani, S., Grappone, C., Franco, R., Susini, T., Forti, G., Maggi, M. Expression of endothelin-1 gene and protein in human granulosa cells. The Journal of Clinical Endocrinology and Metabolism, (1996) 81, 1428–33.Google ScholarPubMed
Fulghesu, A.M., Villa, P., Pavone, V., Guido, M., Apa, R., Caruso, A., Lanzone, A., Rossodivita, A., Mancuso, S. The impact of insulin secretion on the ovarian response to exogenous gonadotropins in polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism, (1997) 82, 644–8.CrossRefGoogle ScholarPubMed
Senger, D.R., Galli, S.J., Dvorak, E., Perruzzi, C.A., Harvey, V.S., Dvorak, H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, (1983) 219, 983–5.CrossRefGoogle ScholarPubMed
Rizk, B. Ovarian hyperstimulation syndrome. In Brindsen, P.R., Rainsbury, R.A., (Eds.), A Textbook of In Vitro Fertilization and Assisted Reproduction. Carnforth, UKParthenon Publishing (1992), Chapter 23, pp. 369–84.Google Scholar
Rizk, B., Aboulghar, N.A., Smitz, J. et al. The role of vascular endothelial growth factor and interleukins in the athogenesis of severe ovarian hyperstimulation syndrome. Human Reproduction Update, (1997) 3, 255–66.CrossRefGoogle Scholar
Ujioka, T., Matsura, K., Tanaka, N., Okamura, H. Involvement of ovarian kinin-kallicrein system in the pathophysiology of ovarian hyperstimulation syndrome: studies in a rat model. Human Reproduction, (1998) 13, 3009–15.CrossRefGoogle Scholar
Senger, D.R., Water, L., Brown, L.F., Nagy, J.A., Yeo, K.T., Yeo, T.K., Berse, B., Jackman, R.W., Dvorak, A.M., Dvorak, H.F. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Reviews, (1993) 12, 303–24.CrossRefGoogle Scholar
Yan, Z., Weich, H.A., Bernart, W., Breckwoldt, M., Neulen, J. Vascular endothelial growth factor (VEGF) messenger ribonucleic acid (mRNA) expression in luteinized human granulosa cells in vitro. The Journal of Clinical Endocrinology and Metabolism, (1993) 77, 1723–5.Google ScholarPubMed
Senger, D.R., Connolly, D.T., Water, L., Feder, J., Dvorak, H.F. Purification and NH2-terminal amino acid sequence of guinea pig tumor secreted vascular permeability factor. Cancer Research (1990) 50, 1774–8.Google ScholarPubMed
Roberts, W.G., Palade, G.E. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. Journal of Cell Science, (1995) 108, 2369–79.Google ScholarPubMed
Wei, M.H., Popescu, N.C., Lerman, M.I., Merrill, M.J., Zimonjic, D.B. Localization of the human vascular endothelial growth factor gene, VEGF, at chromosome 6p12. Human Genetics, (1996) 97, 794–7.CrossRefGoogle ScholarPubMed
Rizk, B. Genetics of ovarian hyperstimulation syndrome. In Rizk, B., (Ed.), Ovarian Hyperstimulation Syndrome. Cambridge, New YorkCambridge University Press (2006), Chapter 4, pp. 79–91.Google Scholar
Neufeld, G., Cohen, T., Gengrinovitch, S., Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. The FASEB Journal, (1999) 13, 9–22.CrossRefGoogle ScholarPubMed
Watkins, R.H., D'Angio, C.T., Ryan, R.M., Patel, A., Maniscalco, W.M. Differential expression of VEGF mRNA splice variants in newborn and adult hyperoxic lung injury. The American Journal of Physiology, (1999) 276, 858–67.Google ScholarPubMed
Olson, T.A., Mohanraj, D., Carson, L.F., Ramakrishnan, S. VP factor gene expression in normal and neoplastic human ovaries. Cancer Research, (1994) 54, 276–80.Google Scholar
Gómez, R., Simón, C., Remohi, J., Pellicer, A. Vascular endothelial growth factor receptor-2 activation induces vascular permeability in hyperstimulated rats, and this effect is prevented by receptor blockade. Endocrinology, (2002) 143, 4339–48.CrossRefGoogle ScholarPubMed
Shima, D.T., Kuroki, M., Deutsch, U., Ng, Y.S., Adamis, A.P., D'Amore, P.A. The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. The Journal of Biological Chemistry, (1996) 271, 3877–83.CrossRefGoogle ScholarPubMed
Burchardt, M., Burchardt, T., Chen, M.W., Shabsigh, A., Taille, A., Buttyan, R., Shabsigh, R. Expression of messenger ribonucleic acid splice variants for the vascular endothelial growth factor in the penis of adult rats and humans. Biology of Reproduction, (1999) 60, 398–404.CrossRefGoogle ScholarPubMed
Neulen, J., Yan, Z., Raczek, S., Weindel, K., Keck, C., Weich, H.A., Marme, D., Breckwoldt, M. Human chorionic gonadotropin-dependent expression of vascular endothelial growth factor/VP factor in human granulosa cells: importance in ovarian hyperstimulation syndrome. The Journal of Clinical Endocrinology and Metabolism, (1995) 80, 1967–71.Google Scholar
Gordon, J.D., Mesiano, S., Zaloudek, C.J., Jaffe, R.B. Vascular endothelial growth factor localization in human ovary and fallopian tubes: possible role in reproductive function and ovarian cyst formation. The Journal of Clinical Endocrinology and Metabolism, (1996) 81, 353–9.Google ScholarPubMed
Otani, N., Minami, S., Yamoto, M., Shikone, T., Otani, H., Nishiyama, R., Otani, T., Nakano, R. The vascular endothelial growth factor/fms-like tyrosine kinase system in human ovary during the menstrual cycle and early pregnancy. The Journal of Clinical Endocrinology and Metabolism, (1999) 84, 3845–51.CrossRefGoogle ScholarPubMed
Yamamoto, S., Konishi, I., Tsuruta, E., Nanbu, K., Mandai, M., Kuroda, H., Matsushita, K., Hamid, A.A., Yura, Y., Mori, T. Expression of vascular endothelial growth factor (VEGF) during folliculogenesis and corpus luteum formation in the human ovary. Gynecologic Endocrinology, (1997) 11, 371–81.CrossRefGoogle ScholarPubMed
Goldsman, M.P., Pedram, A., Domínguez, C.E., Ciuffardi, I., Levin, E., Asch, R.H. Increased capillary permeability induced by human follicular fluid: a hypothesis for an ovarian origin of the hyperstimulation syndrome. Fertility and Sterility, (1995) 63, 268–72.CrossRefGoogle ScholarPubMed
McClure, N., Healy, D.L., Rogers, P.A., Sullivan, J., Beaton, L., Haning, R.V. Jr., Connolly, D.T., Robertson, D.M. Vascular endothelial cell growth factor as permeability agent in ovarian hyperstimulation syndrome. Lancet, (1994) 344, 235–6.CrossRefGoogle Scholar
Phillips, H.S., Hains, J., Leung, D.W., Ferrara, N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology, (1990) 127, 965–7.CrossRefGoogle ScholarPubMed
Vries, C., Escobedo, J.A., Ueno, H., Houck, K., Ferrara, N., Williams, L.T. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science, (1992) 255, 989–91.CrossRefGoogle ScholarPubMed
Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M., Heldin, C.H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. The Journal of Biological Chemistry, (1994) 269, 26988–95.Google ScholarPubMed
Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.F., Breitman, M.L., Schuh, A.C. Failure of blood island formation and vasculogenesis in Flk-1-deficient mice. Nature, (1995) 376, 62–6.CrossRefGoogle ScholarPubMed
Verheul, H.M., Hoekman, K., Jorna, A.S., Smit, E.F., Pinedo, H.M. Targeting vascular endothelial growth factor blockade: ascites and pleural effusion formation. Oncologist, (2000) 5, (Suppl. 1), 45–50.CrossRefGoogle ScholarPubMed
Kendall, R.L., Wang, G., Thomas, K.A. Identification of a natural soluble form of the vascular endothelial growth factor receptor, flt-1, and its heterodimerization with KDR. Biochemical and Biophysical Research Communications, (1996) 226, 324–8.CrossRefGoogle ScholarPubMed
Hornig, C., Behn, T., Bartsch, W., Yayon, A., Weich, H.A. Detection and quantification of complexed and free soluble human vascular endothelial growth factor receptor-1 (sVEGFR-1) by ELISA. Journal of Immunological Methods, (1999) 226, 169–77.CrossRefGoogle ScholarPubMed
Kendall, R.L., Thoma, K.A. Inhibition of vascular endothelial growth factor activity by an endogenously encoded soluble receptor. Proceedings of the National Academy of Sciences of the United States of America, (1993) 90, 10705–9.CrossRefGoogle ScholarPubMed
Roeckle, W., Hecht, D., Sztajer, H., Waltenberger, J., Yayon, A., Weich, H.A. Differential binding characteristics and cellular inhibition by soluble VEGF receptor 1 and 2. Experimental Cell Research, (1998) 241, 161–70.CrossRefGoogle Scholar
Xu, L., Yoneda, J., Herrera, C., Wood, J., Killion, J.J., Fidler, I.J. Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. International Journal of Oncology, (2000) 16, 445–54.Google ScholarPubMed
Yukita, A., Asano, M., Okamoto, T., Mizutani, S., Suzuki, H. Suppression of ascites formation and re-accumulation associated with human ovarian cancer by an anti-VPF monoclonal antibody in vivo. Anticancer Research, (2000) 20, 155–60.Google ScholarPubMed
Kobayashi, H., Okada, Y., Asahina, Gotoh, J., Terao, T. The kallikrein-kinin system, but not vascular endothelial growth factor, plays a role in the increased VP associated with ovarian hyperstimulation syndrome. Journal of Molecular Endocrinology, (1998) 20, 363–74.CrossRefGoogle ScholarPubMed
Agrawal, R., Tan, S.L., Wild, S., Sladkevicius, P., Engmann, L., Payne, N., Bekir, J., Campbell, S., Conway, G., Jacobs, H. Serum vascular endothelial growth factor concentrations in in-vitro fertilization cycles predict the risk of ovarian hyperstimulation syndrome. Fertility and Sterility, (1999) 71, 287–93.CrossRefGoogle ScholarPubMed
Abramov, Y., Barac, V., Nisman, B., Schenker, J.G. Vascular endothelial growth factor plasma levels correlate to the clinical picture in severe ovarian hyperstimulation syndrome. Fertility and Sterility, (1997) 67, 261–5.CrossRefGoogle ScholarPubMed
Chen, C.D., Wu, M.Y., Chen, H.F., Chen, S.U., Ho, H.N., Yang, Y.S. Prognostic importance of serial cytokine changes in ascites and pleural effusion in women with severe ovarian hyperstimulation syndrome. Fertility and Sterility, (1999) 72, 286–92.CrossRefGoogle ScholarPubMed
Albert, C., Garrido, N., Rao, C.V., Remohi, J., Simon, C., Pellicer, A. The role of the endothelium in the pathogenesis of ovarian hyperstimulation syndrome. Molecular Human Reproduction, (2002) 8, 409–18.CrossRefGoogle ScholarPubMed
Wang, T.H., Horng, S.G., Chang, C.L., Wu, H.M., Tsai, Y.J., Wang, H.S., Soong, Y.K. Human chorionic gonadotropin-induced ovarian hyperstimulation syndrome is associated with up-regulation of vascular endothelial growth factor. Journal of Clinical Endocrinology and Metabolism, (2002) 87, 3300–08.CrossRefGoogle ScholarPubMed
Antczak, M., Blerkom, J.The vascular character of ovarian follicular granulosa cells: phenotypic and functional evidence for an endothelial-like cell population. Human Reproduction, (2000) 15, 2306–18.CrossRefGoogle ScholarPubMed
Ujioka, T., Matsuura, E., Kawano, T., Okamura, H. Role of progesterone in capillary permeability in hyperstimulated rats. Human Reproduction, (1997) 12, 1629–34.CrossRefGoogle ScholarPubMed
Gómez, R., Simón, C., Remohi, J., Pellicer, A. Administration of moderate and high doses of gonadotropins to female rats increases ovarian vascular endothelial growth factor (VEGF) and VEGF receptor-2 expression that is associated to vascular hyperpermeability. Biology of Reproduction, (2003) 68, 2164–71.CrossRefGoogle ScholarPubMed
Brekken, R.A., Overholser, J.P., Stastny, V.A., Waltenberger, J., Minna, J.D., Thorpe, P.E. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Research, (2000) 60, 5117–24.Google ScholarPubMed
Wedge, S.R., Ogilvie, D.J., Dukes, M., Kendrew, J., Curwen, J.O., Hennequin, L.F., Thomas, A.P., Stokes, E.S., Curry, B., Richmond, G.H., Wadsworth, P.F. ZD4190: an orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumor efficacy. Cancer Research, (2000) 60, 970–5.Google Scholar
Vajkoczy, P., Menger, M.D., Vollmar, B., Schilling, L., Schmiedek, P., Hirth, K.P., Ullrich, A., Fong, T.A. Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia, (1999) 1, 31–41.CrossRefGoogle ScholarPubMed
Pau, E., Alonso-Muriel, I., Gómez, R., Novella, E., Ruiz, A., Garcia-Velasco, J.A., Simon, C., Pellicer, A. Plasma levels of soluble vascular endothelial growth factor receptor-1 may determine the onset of early and late ovarian hyperstimulation syndrome. Human Reproduction, (2006) 21, 1453–60. Epub (2006) Feb 17.CrossRefGoogle ScholarPubMed
Villasante, A., Pacheco, A., Ruiz, A., Pellicer, A., Garcia-Velasco, J.A. Vascular endothelial cadherin regulates vascular permeability: implications for ovarian hyperstimulation syndrome. The Journal of Clinical Endocrinology and Metabolism, (2006) 10. [Epub ahead of print]Google Scholar
Enskog, A., Henriksson, M., Unander, M., Nilsson, L., Bränström, M. Prospective study of the clinical and laboratory parameters of patients in whom ovarian hyperstimulation syndrome developed during controlled ovarian hyperstimulation for in vitro fertilization. Fertility and Sterility, (1999) 71, 808–14.CrossRefGoogle ScholarPubMed
Rizk, B., Smitz, J. Ovarian hyperstimulation syndrome after superovulation for IVF and related procedures. Human Reproduction (1992) 7, 320–7.CrossRefGoogle ScholarPubMed
Rizk, B., Aboulghar, M.A. (1999). Classification, pathophysiology and management of ovarian hyperstimulation syndrome. In Brinsden, P., (Ed.), A Textbook of In-vitro Fertilization and Assisted Reproduction, Second Edition. Canforth, UKThe Pathenon Publishing Group, Chapter 9, pp. 131–55.Google Scholar
Abramov, T., Elchalal, U., Schenker, J.G. Pulmonary manifestations of severe ovarian hyperstimulation syndrome: a multicenter study. Fertility and Sterility, (1999) 71, 645–51.CrossRefGoogle ScholarPubMed
Rizk, B. Complications of ovarian hyperstimulation syndrome. In Rizk, B., (Ed.), Ovarian Hyperstimulation Syndrome. Cambridge, New YorkCambridge University Press (2006), Chapter 5, pp. 92–118.Google Scholar
Fábregues, F., Balasch, J., Ginés, P., Manau, D., Jiménez, W., Arroyo, V., Creus, M., Vanrell, J.A. Ascites and liver test abnormalities during severe ovarian hyperstimulation syndrome. American Journal of Gastroenterology, (1999) 94, 994–9.CrossRefGoogle ScholarPubMed
Balasch, J., Carmona, F., Llach, J., Arroyo, V., Jové, I., Vanrell, J.A. Acute prerrenal failure and liver dysfunction in a patient with severe ovarian hyperstimulation syndrome. Human Reproduction, (1990) 5, 348–51.CrossRefGoogle Scholar
Gore, L., Nawar, M.G., Rizk, B. et al. Resistant unilateral hydrothorax as the sole manifestation of ovarian hyperstimulation syndrome. Middle East Fertility Society Journal, (2002) 7, 149–53.Google Scholar
Kingsland, C, Collins, JV, Rizk, B, Mason, B. Ovarian hyperstimulation presenting as acute hydrothorax after in-vitro fertilization. American Journal of Obstetric and Gynecology, (1989) 16, 381–2.CrossRefGoogle Scholar
Pellicer, A., Valbuena, D., Cano, F., Remohí, J., Simón, C. Lower implantation rates in high responders: evidence for an altered endocrine milieu during the preimplantation period. Fertility and Sterility, (1996) 65, 1190–5.CrossRefGoogle ScholarPubMed
Simón, C., Garcia-Velasco, J.A., Valbuena, D., Peinado, J.A., Moreno, C., Remohí, J., Pellicer, A. Increasing uterine receptivity by decreasing estradiol levels during the preimplantation period in high responders with the use of a follicle-stimulating hormone step-down regimen. Fertility and Sterility, (1998) 70, 234–9.CrossRefGoogle ScholarPubMed
Aboulghar, M.A., Mansour, R.T., Serour, G.I., Ramzy, A.M., Amin, Y.M. Oocyte quality in patients with severe ovarian hyperstimulation syndrome (OHSS). Fertility and Sterility, (1997) 68, 1017–21.CrossRefGoogle Scholar
Cano, F., García-Velasco, J.A., Millet, A., Remohí, J., Simón, C., Pellicer, A. Oocyte quality in polycystic ovaries revisited: identification of a particular subgroup of women. Journal of Assisted Reproduction and Genetics, (1997) 14, 254–61.CrossRefGoogle Scholar
Rimington, M.R., Walker, S.M., Shaw, R.W. The use of laparoscopic ovarian electrocautery in preventing cancellation of in vitro fertilization treatment cycles due to risk of ovarian hyperstimulation syndrome in women with polycystic ovaries. Human Reproduction, (1997) 12, 1443–7.CrossRefGoogle ScholarPubMed
Rizk, B., Nawar, M.G. Laparoscopic ovarian drilling for surgical induction of ovulation in polycystic ovarian syndrome. In Allahbadia, G. (Ed.), Manual of Ovulation Induction. Mumbai, India Rotunda Medical Technologies (2001), Chapter 18, pp. 140–4.
Rizk, B. Prevention of ovarian hyperstimulation syndrome. In Rizk, B., (Ed.), Ovarian Hyperstimulation Syndrome. Cambridge, New YorkCambridge University Press (2006), Chapter 7, pp. 130–99.Google Scholar
Garcia-Velasco, J.A., Zuniga, A., Pacheco, A., Gómez, R., Simon, C., Remohi, J., Pellicer, A. Coasting acts through downregulation of VEGF gene expression and protein secretion. Human Reproduction, (2004) 19, 1530–8.CrossRefGoogle ScholarPubMed
Garcia-Velasco, J.A., Isaza, V., Quea, G., Pellicer, A. Coasting for the prevention of ovarian hyperstimulation syndrome: much to do about nothing?Fertility and Sterility, (2006) 85, 547–54.CrossRefGoogle Scholar
Fluker, M.R., Hooper, W.M., Yuzpe, A.A.Withholding gonadotropins (“coasting”) to minimize the risk of ovarian hyperstimulation during superovulation and in vitro fertilization-embryo transfer cycles. Fertility and Sterility, (1999) 71, 294–301.CrossRefGoogle ScholarPubMed
Rizk, B. Coasting for the prevention of threatening OHSS: An American Perspective. In Gerris, J., Oliveness, F., Delvigne, A., (Eds.) Ovarian Hyperstimulation Syndrome. Tayler and Francis (2006), Chapter 23, pp. 247–67.Google Scholar
Rizk, B., Thorneycroft, I.H. Does recombinant follicle stimulating hormone abolish the risk of severe ovarian hyperstimulation syndrome?Fertility and Sterility, (1996) 65, S151–2.Google Scholar
Egbase, P.E., Maksheed, M., Sharhan, M.A., Grudzinskas, J.G. Timed unilateral ovarian follicular aspiration prior to administration of human chorionic gonadotrophin for the prevention of severe ovarian hyperstimulation syndrome in in-vitro fertilization: a prospective, randomized study. Human Reproduction, (1997) 12, 2603–6.CrossRefGoogle Scholar
Tomazevic, T., Meden-Vrtovec, H.Early timed follicular aspiration prevents severe ovarian hyperstimulation syndrome. Journal of Assisted Reproduction and Genetics, (1996)13, 282–6.CrossRefGoogle ScholarPubMed
Orvieto, R., Ben-Rafael, Z. Role of intravenous albumin in the prevention of severe ovarian hyperstimulation syndrome. Human Reproduction, (1998) 98, 3306–9.CrossRefGoogle Scholar
König, E., Bussen, S., Sütterlin, M., Steck, T. Prophylactic intravenous hydroxyethyle starch solution prevents moderate-severe ovarian hyperstimulation in in-vitro fertilization patients: a prospective, randomized, double-blind and placebo-controlled study. Human Reproduction, (1998) 13, 2421–4.CrossRefGoogle ScholarPubMed
Bellver, J., Munoz, E.A., Ballesteros, A., Soares, S.R., Bosch, E., Simon, C., Pellicer, A., Remohi, J. Intravenous albumin does not prevent moderate-severe ovarian hyperstimulation syndrome in high-risk IVF patients: a randomized controlled study. Human Reproduction, (2003) 18, 2283–8.CrossRefGoogle Scholar
Awonuga, A.O., Dean, N., Zaidi, J., Pittrof, R.U., Bekir, J.S., Tan, S.L. Outcome of frozen embryo replacement cycles following elective cryopreservation of all embryos in women at risk of developing ovarian hyperstimulation syndrome. Journal of Assisted Reproduction and Genetics, (1996) 13, 293–7.CrossRefGoogle ScholarPubMed
Shaker, A.G., Zosmer, A., Dean, N., Bekir, J.S., Jacobs, H.S., Tan, S.L. Comparison of intravenous albumin and transfer of fresh embryos with cryopreservation of all embryos for subsequent transfer in prevention of ovarian hyperstimulation syndrome. Fertility and Sterility, (1996) 65, 992–6.CrossRefGoogle ScholarPubMed
Zelinski-Wooten, M.B., Hutchison, J.S., Hess, D.L., Wolf, D.P., Stouffer, R.L. A bolus of recombinant human follicle stimulating hormone at midcycle induces periovulatory events following multiple follicular development in macaques. Human Reproduction, (1998) 13, 554–60.CrossRefGoogle ScholarPubMed
Rizk, B. Ovarian hyperstimulation syndrome: prediction, prevention, and management. In Rizk, B., Devroey, P., Meldrum, D.R., (Eds.), Advances and Controversies in Ovulation Induction. 34th ASRM Annual Postgraduate Program, Middle East Fertility Society Precongress Course. ASRM, 57th Annual Meeting, Orlando, FL, Birmingham, Alabamathe American Society for Reproductive Medicine (2001), pp. 23–46.Google Scholar
Rizk, B. Can OHSS in ART be eliminated? In Rizk, B., Meldrum, D., Schoolcraft, W., (Eds.), A Clinical Step-by-Step Course for Assisted Reproductive Technologies. 35th ASRM Annual Postgraduate Program, Middle East Fertility Society Precongress Course. ASRM 58th Annual Meeting, Seattle, WA, Birmingham, AlabamaThe American Society for Reproductive Medicine (2002), pp. 65–102.Google Scholar
Shalev, E., Geslevich, Y., Ben-Ami, M. Induction of pre-ovulatory luteinizing hormone surge by gonadotropin-releasing hormone agonist for women at risk of developing the ovarian hyperstimulation syndrome. Human Reproduction, (1994) 9, 417–19.CrossRefGoogle ScholarPubMed
Rizk, B.Nawar, M.G. Ovarian hyperstimulation syndrome. In Serhal, P., Overton, C. (Eds.), Good Clinical Practice in Assisted Reproduction. Cambridge, UKCambridge University Press (2004), Chapter 8, pp. 146–66.Google Scholar
Morris, R.S., Karande, V.C., Didkiewicz, A., Morris, J.L., Gleicher, N. Octreotide is not useful for clomiphene citrate resistance in patients with polycystic ovary syndrome but may reduce the likelihood of ovarian hyperstimulation syndrome. Fertility and Sterility, (1999) 71, 452–6.CrossRefGoogle Scholar
Jong, D., Macklon, N.S., Mannaerts, B.M., Coelingh Bennink, H.J., Fauser, B.C. High dose gonadotrophin-releasing hormone antagonist (ganirelix) may prevent ovarian hyperstimulation syndrome caused by ovarian stimulation for in-vitro fertilization. Human Reproduction, (1998) 13, 573–5.CrossRefGoogle ScholarPubMed
Gal, M., Eldar-Geva, T., Margalioth, E.J., Barr, I., Orly, J., Diamant, Y.Z. Attenuation of ovarian response by low-dose ketoconazole during superovulation in patients with polycystic ovary syndrome. Fertility and Sterility, (1999) 72, 26–31.CrossRefGoogle ScholarPubMed
Balasch, J., Fábregues, F., Arroyo, V., Jiménez, W., Creus, M., Vanrell, J.A. Treatment of severe ovarian hyperstimulation syndrome by a conservative medical approach. Acta Obstetricia et Gynecologica Scandinavica, (1996) 75, 662–7.CrossRefGoogle ScholarPubMed
Aboulghar, M.A., Mansour, R.T., Serour, G.I., Amin, Y.M. Ultrasonically guided vaginal aspiration of ascites in the treatment of severe ovarian hyperstimulation syndrome. Fertility and Sterility, (1990) 53, 933–5.CrossRefGoogle ScholarPubMed
Al-Ramahi, M., Leader, A., Claman, P., Spence, J. A novel approach to the treatment of ascites associated with ovarian hyperstimulation syndrome. Human Reproduction, (1997) 12, 2614–16.CrossRefGoogle ScholarPubMed
Koike, T., Araki, S., Minakami, H., Ogawa, S., Sayama, M., Shibahara, H., Sato, I. Clinical efficacy of peritoneovenous shunting for the treatment of severe ovarian hyperstimulation syndrome. Human Reproduction, (2000) 15, 113–7.CrossRefGoogle ScholarPubMed
Ferraretti, A.P., Gianaroli, L., Diotallevi, L., Festi, C., Trounson, A. Dopamine treatment for severe ovarian hyperstimulation syndrome. Human Reproduction, (1992) 7, 180–3.CrossRefGoogle ScholarPubMed
Kodama, H., Fukuda, J., Karube, H., Matsui, T., Shimizu, T., Tanaka, T. Characteristics of blood hemostatic markers in a patient with ovarian hyperstimulation syndrome who actually developed thromboembolism. Fertility and Sterility, (1995) 64, 1207–9.CrossRefGoogle Scholar
Marx, G.M., Steer, C.B., Harper, P., Pavlakis, N., Rixe, O., Khayat, D. Unexpected serious toxicity with chemotherapy and antiangiogenic combinations: time to take stock!Journal of Clinical Oncology, (2002) 20, 1446–8.CrossRefGoogle ScholarPubMed
Glade-Bender, J., Kandel, J.J., Yamashiro, D.J. VEGF blocking therapy in the treatment of cancer. Expert Opinion on Biological Therapy, (2003) 3, 263–76.CrossRefGoogle ScholarPubMed
Kuenen, B.C., Tabernero, J., Baselga, J. Efficacy and toxicity of the angiogenesis inhibitor SU5416 as a single agent in patients with advanced renal cell carcinoma, melanoma, and soft tissue sarcoma. Clinical Cancer Research, (2003) 9, 1648–55.Google ScholarPubMed
Basu, S., Nagy, J.A., Pal, S., Vasile, E., Eckelhoefer, I.A., Bliss, V.S., Manseau, E.J., Dasgupta, P.S., Dvorak, H.F., Mukhopadhyay, D. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nature Medicine, (2001) 7, 569–74.CrossRefGoogle ScholarPubMed
Sarkar, C., Chakroborty, D., Mitra, R.B. Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. American Journal of Physiology, Heart and Circulatory Physiology, (2004) 287, H1554–60.CrossRefGoogle ScholarPubMed
Quinn, T.P., Peters, K.G., Vries, C., Ferrara, N., Williams, L.T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America, (1993) 90, 7533–7.CrossRefGoogle ScholarPubMed
Gomez, R., Gonzalez-Izquierdo, M., Zimmermann, R.C., Novella- Maestre, E., Alonso-Muriel, I., Sanchez-Criado, J., Remohi, J., Simon, C., Pellicer, A. Low-dose dopamine agonist administration blocks vascular endothelial growth factor (VEGF)-mediated vascular hyperpermeability without altering VEGF receptor 2- dependent luteal angiogenesis in a rat ovarian hyperstimulation model. Endocrinology, (2006) 147, 5400–11.CrossRefGoogle Scholar
Tsunoda, T., Shibahara, H., Hirano, Y., Suzuki, T., Fujiwara, H., Takamizawa, S., Ogawa, S., Motoyama, M., Suzuki, M. Treatment for ovarian hyperstimulation syndrome using an oral dopamine prodrug, docarpamine. Gynecolgical Endocrinology, (2003) 17, 281–6.Google ScholarPubMed
Manno, M., Tomei, F., Marchesan, E., Adamo, V. Cabergoline: a safe, easy, cheap, and effective drug for prevention/treatment of ovarian hyperstimulation syndrome?European Journal of Obstetrics, Gynecology, and Reproductive Biology, (2005) 122, 127–8.CrossRefGoogle ScholarPubMed
Papaleo, E., Doldi, N., Santis, L., Marelli, G., Marsiglio, E., Rofena, S., Ferrari, A. Cabergoline influences ovarian stimulation in hyperprolactinaemic patients with polycystic ovary syndrome. Human Reproduction, (2001) 16, 2263–6.CrossRefGoogle ScholarPubMed
Shimon, I., Rubenek, T., Bar-Hava, I., Nass, D., Hadani, M., Amsterdam, A., Harel, H. Ovarian hyperstimulation without elevated serum estradiol associated with pure follicle-stimulating hormone-secreting pituitary adenoma. Journal of Clinical Endocrinology and Metabolism, (2001) 86, 3635–40.CrossRefGoogle ScholarPubMed
Christin-Maitre, S., Rongiéres-Bertrand, C., Kottler, M.L., Lahlou, N., Frydman, R., Touraine, P., Bouchard, P. A spontaneous and severe hyperstimulation of the ovaries revealing a gonadotroph adenoma. Journal of Clinical Endocrinology and Metabolism, (1988) 83, 3450–3.Google Scholar
Gómez, R., González, M., Simón, C., Remohi, J., Pellicer, A. Tyroxine hydroxylase (TH) downregulation in hyperstimulated ovaries reveals the dopamine agonist bromocriptine (Br2) as an effective and specific method to block increased vascular permeability (VP) in OHSS. Fertility and Sterility, (2003) 80, (Suppl. 3), 43–4.CrossRefGoogle Scholar
Murata, Y., Ando, H., Nagasaka, T., Takahashi, I., Saito, K., Fukugaki, H., Matsuzawa, K., Mizutani, S. Successful pregnancy after bromocriptine therapy in an anovulatory woman complicated with ovarian hyperstimulation caused by follicle-stimulating hormone-producing plurihormonal pituitary microadenoma. Journal of Clinical Endocrinology and Metabolism, (2003) 88, 1988–93.CrossRefGoogle Scholar
Knoepfelmacher, M., Danilovic, D.L., Rosa Nasser, R.H., Mendonca, B.B. Effectiveness of treating ovarian hyperstimulation syndrome with cabergoline in two patients with gonadotropin-producing pituitary adenomas. Fertility and Sterility, (2006) 86, 719.CrossRefGoogle ScholarPubMed
Alvarez, C., Bosch, E., Melo, M.A.B., Fernández-Sánchez, M., Muñoz, J., Remohí, J., Simón, C., Pellicer, A. The dopamine agonist cabergoline prevents moderate-severe early ovarian hyperstimulation syndrome (OHSS) in high-risk ART patients. Human Reproduction, (2006) 21 (Suppl. 1), i96.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×