Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T15:35:13.086Z Has data issue: false hasContentIssue false

Section 5 - Psychotic disorders in women

Published online by Cambridge University Press:  05 March 2016

David J. Castle
Affiliation:
University of Melbourne
Kathryn M. Abel
Affiliation:
University of Manchester
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

ACOG Committee on Practice Bulletins (2008). Use of psychiatric medications during pregnancy and lactation. Obstetrics & Gynecology, 111, 10011020.CrossRefGoogle Scholar
Adab, N., Jacoby, A., Smith, D., et al. (2001). Additional educational needs in children born to mothers with epilepsy. Journal of Neurology, Neurosurgery & Psychiatry, 70, 1521.Google Scholar
Almgren, M., Källén, B., and Lavebratt, C. (2009). Population-based study of antiepileptic drug exposure in utero—Influence on head circumference in newborns. Seizure, 18, 672675.Google Scholar
American Academy of Neurology. (1998). Practice parameter: Management issues for women with epilepsy (summary statement): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 51, 944948.Google Scholar
American Academy of Pediatrics: Committee on Drugs (2000). Use of psychoactive medication during pregnancy and possible effects on the fetus and newborn. Pediatrics, 105, 880887.Google Scholar
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Anderson, E. L. and Reti, I. M. (2009). ECT in pregnancy: A review of the literature from 1941 to 2007. Psychosomatic Medicine, 71, 235242.Google Scholar
Anderson, I. M., Haddad, P. M., and Scott, J. (2012). Bipolar disorder. British Medical Journal, 345, e8505.Google Scholar
Antoniadis, D., Samakouri, M., and Livaditis, M. (2012). The association of bipolar spectrum disorders and borderline personality disorder. Psychiatric Quarterly, 83, 449465.CrossRefGoogle ScholarPubMed
Arnold, L. M. (2003). Gender differences in bipolar disorder. Psychiatric Clinics of North America, 26, 595620.Google Scholar
Avan, B., Richter, L. M., Ramchandani, , et al. (2010). Maternal postnatal depression and children’s growth and behaviour during the early years of life: Exploring the interaction between physical and mental health. Archives of Disease in Childhood, 95, 690695.CrossRefGoogle ScholarPubMed
Babu, G. N., Desai, G., Tippeswamy, H., et al. (2010). Birth weight and use of olanzapine in pregnancy: A prospective comparative study. Journal of Clinical Psychopharmacology, 30, 331332.CrossRefGoogle ScholarPubMed
Babu, G. N., Thippeswamy, H., and Chandra, P. S. (2013). Use of electroconvulsive therapy (ECT) in postpartum psychosis—a naturalistic prospective study. Archives of Women’s Mental Health, 16, 247251.CrossRefGoogle ScholarPubMed
Baek, J. H., Park, D. Y., Choi, , et al. (2011). Differences between bipolar I and bipolar II disorders in clinical features, comorbidity, and family history. Journal of Affective Disorders, 131, 5967.Google Scholar
Baldassano, C. F., Marangell, L. B., Gyulai, L., et al. (2005). Gender differences in bipolar disorder: Retrospective data from the first 500 STEP‐BD participants. Bipolar Disorders, 7, 465470.CrossRefGoogle ScholarPubMed
Baldessarini, R. J., Bolzani, L., Cruz, N., et al. (2010). Onset-age of bipolar disorders at six international sites. Journal of Affective Disorders, 121, 143146.CrossRefGoogle ScholarPubMed
Bauer, M., Grof, P., Rasgon, , et al. (2006). Temporal relation between sleep and mood in patients with bipolar disorder. Bipolar Disorders, 8, 160167.Google Scholar
Bauler, S., Janoly-Dumenil, A., Sancho, P. O., et al. (2012). Effect of carbamazepine on fluindione’s anticoagulant activity: A case report. Thérapie, 67, 488489.Google Scholar
Bellantuono, C., Tofani, S., Di Sciascio, G., et al. (2013). Benzodiazepine exposure in pregnancy and risk of major malformations: A critical overview. General Hospital Psychiatry, 35, 38.CrossRefGoogle ScholarPubMed
Bergink, V., Bouvy, P. F., Vervoort, J. S., et al. (2012). Prevention of postpartum psychosis and mania in women at high risk. American Journal of Psychiatry, 169, 609615.CrossRefGoogle ScholarPubMed
Bilszta, J. L., Meyer, D., and Buist, A. E. (2010). Bipolar affective disorder in the postnatal period: Investigating the role of sleep. Bipolar Disorders, 12, 568578.CrossRefGoogle ScholarPubMed
Binfa, L., Castelo-Branco, C., Blümel, J. E., et al. (2004). Influence of psycho-social factors on climacteric symptoms. Maturitas, 48, 425431.Google Scholar
Birmaher, B., Axelson, D., Monk, K., et al. (2009). Lifetime psychiatric disorders in school-aged offspring of parents with bipolar disorder: The Pittsburgh Bipolar Offspring study. Archives of General Psychiatry, 66, 287296.Google Scholar
Blehar, M. C., DePaulo, J. R. Jr., Gershon, E. S., et al. (1998). Women with bipolar disorder: Findings from the NIMH genetics initiative sample. Psychopharmacology Bulletin, 34, 239243.Google Scholar
Bodén, R., Lundgren, M., Brandt, L., et al. (2012). Risks of adverse pregnancy and birth outcomes in women treated or not treated with mood stabilisers for bipolar disorder: Population based cohort study. British Medical Journal, 345, e7085.Google Scholar
Bogen, D. L., Sit, D., Genovese, A., et al. (2012). Three cases of lithium exposure and exclusive breastfeeding. Archives of Women’s Mental Health, 15, 6972.Google Scholar
Bonari, L., Pinto, N., Ahn, E., et al. (2004). Perinatal risks of untreated depression during pregnancy. Canadian Journal of Psychiatry, 49, 726735.Google Scholar
Bradley, R. and Slade, P. (2011). A review of mental health problems in fathers following the birth of a child. Journal of Reproductive and Infant Psychology, 29, 1942.Google Scholar
Brockington, I. (2004). Postpartum psychiatric disorders. Lancet, 363, 303310.Google Scholar
Burt, V. K. and Rasgon, N. (2004). Special considerations in treating bipolar disorder in women. Bipolar Disorders, 6, 213.CrossRefGoogle ScholarPubMed
Burt, V. K., Bernstein, C., Rosenstein, W. S., et al. (2010). Bipolar disorder and pregnancy: Maintaining psychiatric stability in the real world of obstetric and psychiatric complications. American Journal of Psychiatry, 167, 892897.Google Scholar
Byers, M. G., Allison, K. M., Wendel, C. S., et al. (2010). Prazosin versus quetiapine for nighttime posttraumatic stress disorder symptoms in veterans: An assessment of long-term comparative effectiveness and safety. Journal of Clinical Psychopharmacology, 30, 225229.Google Scholar
Campbell, E., Devenney, E., Morrow, J., et al. (2013). Recurrence risk of congenital malformations in infants exposed to antiepileptic drugs in utero. Epilepsia, 54, 165171.CrossRefGoogle ScholarPubMed
Carter, A. S., Garrity-Rokous, F. E., Chazan-Cohen, R., et al. (2001). Maternal depression and comorbidity: Predicting early parenting, attachment security, and toddler social-emotional problems and competencies. Journal of the American Academy of Child and Adolescent Psychiatry, 40, 1826.Google Scholar
Chaudron, J. H. and Pies, R. W. (2003). The relationship between postpartum psychosis and bipolar disorder: A review. Journal of Clinical Psychiatry, 64, 12841292.Google Scholar
Chaudron, L. H. (2000). When and how to use mood stabilizers during breastfeeding. Primary Care Update for Obstetricians and Gynaecologists, 7, 113117.CrossRefGoogle ScholarPubMed
Chaudron, L. H. and Jefferson, J. W. (2000). Mood stabilizers during breastfeeding: A review. Journal of Clinical Psychiatry, 61, 7990.Google Scholar
Chessick, C. A. and Dimidjian, S. (2010). Screening for bipolar disorder during pregnancy and the postpartum period. Archives of Women’s Mental Health, 13, 233248.CrossRefGoogle ScholarPubMed
Christensen, J., Gronborg, T. K., and Sorensen, M. J. (2013). Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA, 309, 16961703.Google Scholar
Christensen, J., Petrenaite, V., Atterman, J., et al. (2007). Oral contraceptives induce lamotrigine metabolism: Evidence from a double‐blind, placebo‐controlled trial. Epilepsia, 48, 484489.CrossRefGoogle ScholarPubMed
Clarkin, J. F., Carpenter, D., Hull, J., et al. (1998). Effects of psychoeducational intervention for married patients with bipolar disorder and their spouses. Psychiatric Services, 49, 531553.Google Scholar
Coe, H. V. and Hong, I. S. (2012). Safety of low doses of quetiapine when used for insomnia. The Annals of Pharmacotherapy, 46, 718722.CrossRefGoogle ScholarPubMed
Cohen, L. S. and Nonacs, R. M. (Eds.) (2005). In Oldham, J. M. and Nonacs, R. M. (Series Eds.), Review of Psychiatry: Vol. 24. Mood and Anxiety Disorders During Pregnancy and Postpartum. Arlington, VA: American Psychiatric Publishing.Google Scholar
Cohen, L. S., Sichel, D. A., Robertson, L. M., et al. (1995). Postpartum prophylaxis for women with bipolar disorder. American Journal of Psychiatry, 152, 16411645.Google ScholarPubMed
Colom, F., Vieta, E., Reinares, M., et al. (2003). Psychoeducation efficacy in bipolar disorders: Beyond compliance enhancement. The Journal of Clinical Psychiatry, 64, 11011105.Google Scholar
Cox, J. L., Holden, J. M., and Sagovsky, R. (1987). Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. British Journal of Psychiatry, 150, 782786.CrossRefGoogle ScholarPubMed
Cummings, C., Stewart, M., Stevenson, M., et al. (2011). Neurodevelopment of children exposed in utero to lamotrigine, sodium valproate and carbamazepine. Archives of Disease in Childhood, 96, 643647.Google Scholar
Cunnington, M. C., Weil, J. G., Messenheimer, J. A., et al. (2011). Final results from 18 years of the International Lamotrigine Pregnancy Registry. Neurology, 76, 18171823.Google Scholar
Da Silva, T. L., Ravindran, L. N., and Ravindran, A. V. (2009). Yoga in the treatment of mood and anxiety disorders: A review. Asian Journal of Psychiatry, 2, 616.Google Scholar
Davanzo, R., Dal Bo, S., Bua, J., et al. (2013). Antiepileptic drugs and breastfeeding. Italian Journal of Pediatrics, 39, 111.Google Scholar
Deckersbach, T., Hölzel, B. K., Eisner, L. R., et al. (2012). Mindfulness-based cognitive therapy for nonremitted patients with bipolar disorder. CNS Neuroscience & Therapeutics, 18, 133141.CrossRefGoogle ScholarPubMed
Dev, V. J. and Krupp, P. (1995). Adverse event profile and safety of clozapine. Reviews in Contemporary Pharmacotherapy, 6, 197208.Google Scholar
Diav-Citrin, O., Shechtman, S., Arnon, J., et al. (2001). Is carbamazepine teratogenic? A prospective controlled study of 210 pregnancies. Neurology, 57, 321324.CrossRefGoogle ScholarPubMed
Diav-Citrin, O., Shechtman, S., Ornoy, S., et al. (2005). Safety of haloperidol and penfluridol in pregnancy: A multicenter, prospective, controlled study. The Journal of Clinical Psychiatry, 66, 317322.Google Scholar
Dietz, L. J., Jennings, K. D., Kelley, S. A., et al. (2009). Maternal depression, paternal psychopathology, and toddlers’ behavior problems. Journal of Clinical Child & Adolescent Psychology, 38, 4861.Google Scholar
DiFlorio, A. and Jones, I. (2010). Is sex important? Gender differences in bipolar disorder. International Review of Psychiatry, 22, 437452.Google Scholar
DiLiberti, J. H., Farndon, P. A., Dennis, N. R., et al. (1984). The fetal valproate syndrome. American Journal of Medical Genetics, 19, 473481.Google Scholar
Doucet, S., Jones, I., Letourneau, N., et al. (2011). Interventions for the prevention and treatment of postpartum psychosis: A systematic review. Archives of Women’s Mental Health, 14, 8998.Google Scholar
Dursun, A., Karadag, N., Karagöl, B., et al. (2012). Carbamazepine use in pregnancy and coincidental thalidomide-like phocomelia in a newborn. Journal of Obstetrics & Gynaecology, 32, 488489.CrossRefGoogle ScholarPubMed
Ebbesen, F., Joergensen, A., Hoseth, E., et al. (2000). Neonatal hypoglycaemia and withdrawal symptoms after exposure in utero to valproate. Archives of Disease in Childhood Fetal and Neonatal Edition, 83, F124F129.Google Scholar
Einarson, A. and Boskovic, R. (2009). Use and safety of antipsychotic drugs during pregnancy. Journal of Psychiatric Practice, 15, 183192.Google Scholar
Enato, E., Moretti, M., and Koren, G. (2011). The fetal safety of benzodiazepines: An updated meta-analysis. Journal of Obstetrics and Gynaecology Canada, 33, 46.Google Scholar
Eriksson, K., Viinikainen, K., Mönkkönen, A., et al. (2005). Children exposed to valproate in utero—population based evaluation of risks and confounding factors for long-term neurocognitive development. Epilepsy Research, 65, 189200.Google Scholar
Eriksson, E., Andersch, B., Ho, H. P., et al. (2002). Diagnosis and treatment of premenstrual dysphoria. Journal of Clinical Psychiatry, 63(Suppl. 7), 1623.Google Scholar
Ernst, C. L. and Goldberg, J. F. (2002). The reproductive safety profile of mood stabilizers, atypical antipsychotics, and broad-spectrum psychotropics. Journal of Clinical Psychiatry, 63(Suppl. 4), 4255.Google ScholarPubMed
Eros, E., Czeizel, A. E., Rockenbauer, M., et al. (2002). A population-based case–control teratologic study of nitrazepam, medazepam, tofisopam, alprazolum and clonazepam treatment during pregnancy. European Journal of Obstetrics & Gynecology and Reproductive Biology, 101, 147154.Google Scholar
Faraone, S. V., Biederman, J., and Wozniak, J. (2012). Examining the comorbidity between attention deficit hyperactivity disorder and bipolar I disorder: A meta-analysis of family genetic studies. American Journal of Psychiatry, 169, 12561266.Google Scholar
Farren, C. K., Hill, K. P., and Weiss, R. D. (2012). Bipolar disorder and alcohol use disorder: A review. Current Psychiatry Reports, 14, 659666.Google Scholar
Feingold, S. B. and Brown, R. S. (2010). Neonatal thyroid function. NeoReviews, 11, e640e646.Google Scholar
Field, T. (2011). Yoga clinical research review. Complementary Therapies in Clinical Practice, 17, 18.Google Scholar
Field, T. and Diego, M. (2008). Cortisol: The culprit prenatal stress variable. International Journal of Neuroscience, 118, 11811205.Google Scholar
Field, T., Diego, M., Dieter, J., et al. (2004). Prenatal depression effects on the fetus and the newborn. Infant Behavior and Development, 27, 216229.Google Scholar
Finer, L. B. and Zolna, M. R. (2011). Unintended pregnancy in the United States: Incidence and disparities, 2006. Contraception, 84, 478485.Google Scholar
Finnerty, M., Levin, Z., and Miller, L. J. (1996). Acute manic episodes in pregnancy. American Journal of Psychiatry, 153, 261263.Google Scholar
Flynn, S., Shaw, J., Abel, K. M. (2007) Homicide of infants: a cross-sectional study. Journal of Clinical Psychiatry, 68, 15011509.Google Scholar
Flynn, S. M., Shaw, J., Abel, K. M. (2013). Filicide: mental illness in those who kill their children. PLoS ONE, 8(4), DOI:10.1371/journal.pone.0058981Google Scholar
Focht, A., and Kellner, C. (2012). Electroconvulsive therapy (ECT) in the treatment of postpartum psychosis. The Journal of Electroconvulsive Therapy, 28, 3133.Google Scholar
Fracalanza, K. A., McCabe, R. E., Taylor, V. H., et al. (2011). Bipolar disorder comorbidity in anxiety disorders: Relationship to demographic profile, symptom severity, and functional impairment. The European Journal of Psychiatry, 25, 223233.CrossRefGoogle Scholar
Frank, E., Cyranowski, I. M., Rucci, P., et al. (2002). Clinical significance of lifetime panic spectrum symptoms in the treatment of patients with bipolar l disorder. Archives of General Psychiatry, 59, 905911.Google Scholar
Freeman, E. W., Sammel, M. D., Rinaudo, P. J., et al. (2004). Premenstrual syndrome as a predictor of menopausal symptoms. Obstetrics & Gynecology, 103, 960966.Google Scholar
Freeman, M. P., Smith, K. W., Freeman, S. A., et al. (2002). The impact of reproductive events on the course of bipolar disorder in women. Journal of Clinical Psychiatry, 63, 284287.Google Scholar
Frey, B., Braegger, C. P., and Ghelfi, D. (2002). Neonatal cholestatic hepatitis from carbamazepine exposure during pregnancy and breast feeding. The Annals of Pharmacotherapy, 36, 644647.CrossRefGoogle ScholarPubMed
Frieder, A., Dunlop, A. L., Culpepper, L., et al. (2008). The clinical content of preconception care: Women with psychiatric conditions. American Journal of Obstetrics and Gynecology, 199, S328S332.Google Scholar
Froscher, W. and Jurges, U. (2006). Topiramate used during breast feeding. Aktuelle Neurologie, 33, 215217.Google Scholar
Gaily, E., Kantola-Sorsa, E., Hiilesmaa, V., et al. (2004). Normal intelligence in children with prenatal exposure to carbamazepine. Neurology, 62, 2832.Google Scholar
Galbally, M., Roberts, M., and Buist, A. (2010). Mood stabilizers in pregnancy: A systematic review. Australian and New Zealand Journal of Psychiatry, 44, 967977.Google Scholar
Galbally, M., Snellen, M., Walker, S., et al. (2010). Management of antipsychotic and mood stabilizer medication in pregnancy: Recommendations for antenatal care. Australian and New Zealand Journal of Psychiatry, 44, 99108.Google Scholar
Galimberti, C. A., Mazzucchelli, I., Arbasino, C., et al. (2006). Increased apparent oral clearance of valproic acid during intake of combined contraceptive steroids in women with epilepsy. Epilepsia, 47, 15691572.Google Scholar
Gentile, S. (2008). Infant safety with antipsychotic therapy in breast-feeding: A systematic review. The Journal of Clinical Psychiatry, 69, 666673.CrossRefGoogle ScholarPubMed
Gentile, S. (2010a). Antipsychotic therapy during early and late pregnancy: A systematic review. Schizophrenia Bulletin, 36, 518544.Google Scholar
Gentile, S. (2010b). Neurodevelopmental effects of prenatal exposure to psychotropic medications. Depression and Anxiety, 27, 675686.Google Scholar
Gentile, S. (2012). Lithium in pregnancy: The need to treat, the duty to ensure safety. Expert Opinion on Drug Safety, 11, 425437.Google Scholar
George, E.L., Miklowitz, D.J., Richards, J. A., et al. (2003). The comorbidity of bipolar disorder and axis II personality disorders: Prevalence and clinical correlates. Bipolar Disorders, 5, 115122.Google Scholar
Gilad, O., Merlob, P., Stahl, B., et al. (2011). Outcome of infants exposed to olanzapine during breastfeeding. Breastfeeding Medicine, 6, 5558.CrossRefGoogle ScholarPubMed
Glover, V., Liddle, P., Taylor, A., et al. (1994). Mild hypomania (the highs) can be a feature of the first postpartum week. Association with later depression. The British Journal of Psychiatry, 164, 517521.Google Scholar
Goldberg, J. F. and Ernst, C. L. (2002). The economic and social burden of bipolar disorder: A review. In Maj, M., Akisal, H. S., Lopez-Ibor, J. J., et al. (Series Eds.), Bipolar Disorder, Vol. 5 (pp. 441467). Chichester, UK: Wiley.Google Scholar
Grandjean, E. M., & Aubry, J. M. (2009). Lithium: updated human knowledge using an evidence-based approach. CNS Drugs, 23(5), 397418.Google Scholar
Green, L., Vais, A., and Harding, K. (2013). Preconception care for women with mental health conditions. British Journal of Hospital Medicine, 74, 319321.Google Scholar
Grof, P., Robbins, W., Alda, M., et al. (2000). Protective effect of pregnancy in women with lithium-responsive bipolar disorder. Journal of Affective Disorders, 61, 3139.Google Scholar
Guerrini, R., Zaccara, G., la Marca, G., et al. (2012). Safety and tolerability of antiepileptic drug treatment in children with epilepsy. Drug Safety, 35, 519533.Google Scholar
Harden, C. L., Pennell, P. B., Koppel, B. S., et al. (2009). Practice Parameter update: Management issues for women with epilepsy—focus on pregnancy (an evidence-based review): Vitamin K, folic acid, blood levels, and breastfeeding. Neurology, 73, 142149.Google Scholar
Hendrick, V., Altshuler, L. L., Gitlin, M. J. et al. (2000). Gender and bipolar illness. Journal of Clinical Psychiatry, 61, 393396.Google Scholar
Henin, A., Biederman, J., Mick, E., et al. (2005). Psychopathology in the offspring of parents with bipolar disorder: A controlled study. Biological Psychiatry, 58, 554561.Google Scholar
Hernández-Díaz, S., Smith, C. R., Shen, A., et al. (2012). Comparative safety of antiepileptic drugs during pregnancy. Neurology, 78, 16921699.Google Scholar
Heron, J., Haque, S., Oyebode, F., et al. (2009). A longitudinal study of hypomania and depression symptoms in pregnancy and the postpartum period. Bipolar Disorders, 11, 410417.Google Scholar
Herzog, A. G., Blum, A. S., Farina, E. L., et al. (2009). Valproate and lamotrigine level variation with menstrual cycle phase and oral contraceptive use. Neurology, 72, 911914.CrossRefGoogle ScholarPubMed
Hill, R. C., McIvor, R. J., Wojnar-Horton, R. E., et al. (2000). Risperidone distribution and excretion into human milk: Case report and estimated infant exposure during breast-feeding. Journal of Clinical Psychopharmacology, 20, 285286.Google Scholar
Hillegers, M. H., Reichart, C. G., Wals, M., et al. (2005). Five-year prospective outcome of psychopathology in the adolescent offspring of bipolar parents. Bipolar Disorders, 7, 344350.Google Scholar
Hirschfeld, R. M., Williams, J. B., Spitzer, R. L., et al. (2000). Development and validation of a screening instrument for bipolar spectrum disorder: The Mood Disorder Questionnaire. American Journal of Psychiatry, 157, 18731875.Google Scholar
Holland, J., Agius, M., and Zaman, R. (2011). Prevalence of co-morbid bipolar disorder and migraine in a regional hospital psychiatric outpatient department. Psychiatria Danubina, 23(Suppl. 1), S23S24.Google Scholar
Holmes, L. B., Adams, J., Coull, B., et al. (2000). Anticonvulsant face: Association with cognitive dysfunction. Pediatric Research, 47(Suppl.), 82A.Google Scholar
Holmes, L. B., Coull, B. A., Dorfman, J., et al. (2005). The correlation of deficits in IQ with midface and digit hypoplasia in children exposed in utero to anticonvulsant drugs. The Journal of Pediatrics, 146, 118122.Google Scholar
Hudak, M. L., Tan, R. C., Frattarelli, D. A., et al. (2012). Neonatal drug withdrawal. Pediatrics, 129, e540e560.Google Scholar
Hunt, N. and Silverstone, T. (1995). Does puerperal illness distinguish a subgroup of bipolar patients? Journal of Affective Disorders, 34, 101107.Google Scholar
Ibiloglu, A. O. and Caykoylu, A. (2011). The comorbidity of anxiety disorders in bipolar I and bipolar II patients among Turkish population. Journal of Anxiety Disorders, 25, 661667.Google Scholar
Ilett, K. F., Hackett, L. P., Kristensen, J. H., Vaddadi, K. S., Gardiner, S. J., & Begg, E. J. (2004). Transfer of risperidone and 9-hydroxyrisperidone into human milk. Annals of Pharmacotherapy, 38(2), 273276.CrossRefGoogle ScholarPubMed
Ives-Deliperi, V. L., Howells, F., Stein, D. J., et al. (2013). The effects of mindfulness-based cognitive therapy in patients with bipolar disorder: A controlled functional MRI investigation. Journal of Affective Disorders, 150, 1152.Google Scholar
Jackson, A., Cavanagh, J., and Scott, J. (2003). A systematic review of manic and depressive prodromes. Journal of Affective Disorders, 74, 209217.Google Scholar
Jentink, J., Loane, M. A., Dolk, H., et al. (2010). Valproic acid monotherapy in pregnancy and major congenital malformations. New England Journal of Medicine, 362, 21852193.Google Scholar
Jiang, B., Kenna, H. A., and Rasgon, N. L. (2009). Genetic overlap between polycystic ovary syndrome and bipolar disorder: The endophenotype hypothesis. Medical Hypotheses, 73, 9961004.Google Scholar
Johannessen, S. I., Helde, G., and Brodtkorb, E. (2005). Levetiracetam concentrations in serum and in breast milk at birth and during lactation. Epilepsia, 46, 775777.Google Scholar
Jones, I. and Craddock, N. (2001). Familiality of the puerperal trigger in bipolar disorder: Results of a family study. American Journal of Psychiatry, 158, 913917.Google Scholar
Kaaja, E., Kaaja, R., Matila, R., et al. (2002). Enzyme-inducing antiepileptic drugs in pregnancy and the risk of bleeding in the neonate. Neurology, 58, 549553.Google Scholar
Källén, B. and Reis, M. (2012). Neonatal complications after maternal concomitant use of SSRI and other central nervous system active drugs during the second or third trimester of pregnancy. Journal of Clinical Psychopharmacology, 32, 608614.Google Scholar
Kay, J. H., Altshuler, L. L., Ventura, J., et al. (2002). Impact of axis II comorbidity on the course of bipolar illness in men: A retrospective chart review. Bipolar Disorders, 4, 237242.Google Scholar
Kelly, L. E., Poon, S., Madadi, P., et al. (2012). Neonatal benzodiazepines exposure during breastfeeding. The Journal of Pediatrics, 161, 448451.Google Scholar
Kemp, D. E., Gao, K., Chan, P. K., et al. (2010). Medical comorbidity in bipolar disorder: Relationship between illnesses of the endocrine/metabolic system and treatment outcome. Bipolar Disorders, 12, 404413.Google Scholar
Kendell, R. E., Chalmers, J. C., and Platz, C. (1987). Epidemiology of puerperal psychoses. The British Journal of Psychiatry, 150, 662673.Google Scholar
Kilbane, E. J., Gokbayrak, N. S., Galynker, I., et al. (2009). A review of panic and suicide in bipolar disorder: Does comorbidity increase risk? Journal of Affective Disorders, 115, 110.Google Scholar
Kjaer, D., Horvath‐Puhó, E., Christensen, J., Vestergaard, M., Czeizel, A. E., Sørensen, H. T., & Olsen, J. (2007). Use of phenytoin, phenobarbital, or diazepam during pregnancy and risk of congenital abnormalities: a case‐time‐control study. Pharmacoepidemiology and Drug Safety, 16(2), 181188.Google Scholar
Klipstein, K. G. and Goldberg, J. F. (2006). Screening for bipolar disorder in women with polycystic ovary syndrome: A pilot study. Journal of Affective Disorders, 91, 205209.Google Scholar
Korja, R., Savonlahti, E., Ahlqvist-Bjorkroth, S., et al. (2008). Maternal depression is associated with mother-infant interaction in preterm infants. Acta Paediatrica, 97, 724730.Google Scholar
Kozma, C. (2005). Neonatal toxicity and transient neurodevelopmental deficits following prenatal exposure to lithium: Another clinical report and a review of the literature. American Journal of Medical Genetics Part A, 132, 441444.Google Scholar
Kumar, S., Mohanty, B. B., Agrawal, D., et al. (2012). Antiepileptics and pregnancy: A review. International Journal of Current Research and Review, 4, 132143.Google Scholar
Kupka, R. W., Luckenbaugh, D. A., Post, R. M., et al. (2005). Comparison of rapid-cycling and non-rapid-cycling bipolar disorder based on prospective mood ratings in 539 outpatients. American Journal of Psychiatry, 162, 12731280.Google Scholar
Lahdelma, L. (2012). Clozapine/neuropsychotherapeutics: Agranulocytosis: 7 case reports. Reactions, 1420, 20.Google Scholar
Lam, D. H., Bright, J., Jones, S., et al. (2000). Cognitive therapy for bipolar illness—a pilot study of relapse prevention. Cognitive Therapy and Research, 24, 503520.Google Scholar
Lam, D. H., Watkins, E. R., Hayward, P., et al. (2003). A randomized controlled study of cognitive therapy for relapse prevention for bipolar affective disorder: Outcome of the first year. Archives of General Psychiatry, 60, 145152.Google Scholar
Lapalme, M., Hodgins, S. and LaRoche, C. (1997). Children of parents with bipolar disorder: A metaanalysis of risk for mental disorders. Canadian Journal of Psychiatry, 42, 623631.Google Scholar
Lee, A., Giesbrecht, E., Dunn, E., et al. (2004). Excretion of quetiapine in breast milk. The American Journal of Psychiatry, 161, 17151716.Google Scholar
Lin, H. C., Chen, I. J., Chen, Y. H. et al. (2010). Maternal schizophrenia and pregnancy outcome: Does the use of antipsychotics make a difference? Schizophrenia Research, 116, 5560.Google Scholar
Linnebank, M., Moskau, S., Semmler, A., et al. (2011). Antiepileptic drugs interact with folate and vitamin B12 serum levels. Annals of Neurology, 69, 352359.Google Scholar
Liporace, J., Kao, A., and D’Abreu, A. (2004). Concerns regarding lamotrigine and breast-feeding. Epilepsy & Behavior, 5, 102105.Google Scholar
Lippi, G. and Franchini, M. (2011). Vitamin K in neonates: Facts and myths. Blood Transfusion, 9, 49.Google Scholar
Mackay, F. J., Wilton, L. V., Pearce, G. L., et al. (1997). Safety of long-term lamotrigine in epilepsy. Epilepsia, 38, 881886.Google Scholar
Madigan, S., Moran, G., Schuengel, C., et al. (2007). Unresolved maternal attachment representations, disrupted maternal behavior and disorganized attachment in infancy: Links to toddler behavior problems. Journal of Child Psychology and Psychiatry and Allied Disciplines, 48, 10421050.Google Scholar
Margulis, A. V., Mitchell, A. A., Gilboa, S. M., et al. (2012). Use of topiramate in pregnancy and risk of oral clefts. American Journal of Obstetrics & Gynecology, 207, 405.e1405.e7.Google Scholar
Martins, C. and Gaffan, E. A. (2000). Effects of early maternal depression on patterns of infant-mother attachment: A meta-analytic investigation. Journal of Child Psychology and Psychiatry and Allied Disciplines, 41, 737746.Google Scholar
Matlow, J. and Koren, G. (2012). Is carbamazepine safe to take during pregnancy? Canadian Family Physician, 58, 163164.Google Scholar
McCauley-Elsom, K., Gurvich, C., Elsom, S. J., et al. (2010). Antipsychotics in pregnancy. Journal of Psychiatric and Mental Health Nursing, 17, 97104.Google Scholar
McElroy, S. L., Frye, M. A., Hellemann, G., et al. (2011). Prevalence and correlates of eating disorders in 875 patients with bipolar disorder. Journal of Affective Disorders, 128, 191198.Google Scholar
McElroy, S. L., Altshuler, L. L., Suppes, T., et al. (2001). Axis I psychiatric comorbidity and its relationship to historical illness variables in 288 patients with bipolar disorder. American Journal of Psychiatry, 158, 420426.Google Scholar
McIntyre, R. S., Konarski, J. Z., Wilkins, K., et al. (2006). The prevalence and impact of migraine headache in bipolar disorder: Results from the Canadian Community Health Survey. Headache: The Journal of Head and Face Pain, 46, 973982.Google Scholar
McIntyre, R. S., Soczynska, J. K., Beyer, J. L., et al. (2007). Medical comorbidity in bipolar disorder: Reprioritizing unmet needs. Current Opinion in Psychiatry, 20, 406416.Google Scholar
McKinlay, S. M., Brambilla, D. J., and Posner, J. G. (1992). The normal menopause transition. The American Journal of Human Biology, 4, 3746.Google Scholar
Meador, K. J., Baker, G. A., Browning, N., et al. (2010). Effects of breastfeeding in children of women taking antiepileptic drugs. Neurology, 75, 19541960.Google Scholar
Meador, K. J., Baker, G. A., Browning, N., et al. (2013). Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): A prospective observational study. The Lancet Neurology, 12, 244252.Google Scholar
Mendhekar, D. N. (2007). Possible delayed speech acquisition with clozapine therapy during pregnancy and lactation. The Journal of Neuropsychiatry and Clinical Neurosciences, 19, 196197.Google Scholar
Merikangas, K. R., Akiskal, H. S., Angst, J., et al. (2007). Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Archives of General Psychiatry, 64, 543552.Google Scholar
Merikangas, K. R., Jin, R., He, J. P., et al. (2011). Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Archives of General Psychiatry, 68, 241251.Google Scholar
Miklowitz, D. J., George, E. L., Richards, J. A., et al. (2003). A randomized study of family-focused psychoeducation and pharmacotherapy in the outpatient management of bipolar disorder. Archives of General Psychiatry, 60, 904912.Google Scholar
Miklowitz, D. J., Simoneau, T. L., George, E. L., et al. (2000). Family-focused treatment of bipolar disorder: 1-year effects of a psychoeducational program in conjunction with pharmacotherapy. Biological Psychiatry, 48, 582592.Google Scholar
Misri, S. and Lusskin, S. I. (2004). Postpartum mood disorders. In Rose, B. D. (Ed.), UpToDate.Google Scholar
Misri, S., Corral, M., Wardrop, A. A., et al. (2006). Quetiapine augmentation in lactation: A series of case reports. Journal of Clinical Psychopharmacology, 26, 508511.Google Scholar
Mølgaard-Nielsen, D. and Hviid, A. (2011). Newer-generation antiepileptic drugs and the risk of major birth defects. JAMA, 305, 1996.Google Scholar
Moore, J. L. and Aggarwal, P. (2012). Lamotrigine use in pregnancy. Expert Opinion on Pharmacotherapy, 13, 12131216.Google Scholar
Mortensen, P. B., Pedersen, C. B., Melbye, M., et al. (2003). Individual and familial risk factors for bipolar affective disorders in Denmark. Archives of General Psychiatry, 60, 12091215.Google Scholar
Munk-Olsen, T., Laursen, T. M., Meltzer-Brody, S., et al. (2012). Psychiatric disorders with postpartum onset: Possible early manifestations of bipolar affective disorders. Archives of General Psychiatry, 69, 428.Google Scholar
Nassir Ghaemi, S., Miller, C.J., Berv, D.A., et al. (2005). Sensitivity and specificity of a new bipolar spectrum diagnostic scale. Journal of Affective Disorders, 84, 273–77.Google Scholar
Newport, D. J., Viguera, A. C., Beach, A. J., et al. (2005). Lithium placental passage and obstetrical outcome: Implications for clinical management during late pregnancy. American Journal of Psychiatry, 162, 21622170.Google Scholar
Nguyen, H. T., Sharma, V., and McIntyre, R. S. (2009). Teratogenesis associated with antibipolar agents. Advances in Therapy, 26, 281294.Google Scholar
Nielsen, R. E. and Damkier, P. (2012). Pharmacological treatment of unipolar depression during pregnancy and breast-feeding: A clinical overview. Nordic Journal of Psychiatry, 66, 159166.Google Scholar
Nivoli, A., Pacchiarotti, I., Rosa, A. R., et al. (2011). Gender differences in a cohort study of 604 bipolar patients: The role of predominant polarity. Journal of Affective Disorders, 133, 443449.Google Scholar
O’Donovan, C., Kusumakar, V., Graves, G. R. et al. (2002). Menstrual abnormalities and polycystic ovary syndrome in women taking valproate for bipolar mood disorder. The Journal of Clinical Psychiatry, 63, 322330.Google Scholar
Ohman, I., Sabers, A., de Flon, P., et al. (2009). Pharmacokinetics of topiramate during pregnancy. Epilepsy Research, 87, 124129.Google Scholar
Ohman, I., Vitols, S., Luef, G., et al. (2002). Topiramate kinetics during delivery, lactation, and in the neonate: Preliminary observations. Epilepsia, 43, 11571160.Google Scholar
Ortiz, A., Cervantes, P., Zlotnik, G., et al. (2010). Cross‐prevalence of migraine and bipolar disorder. Bipolar Disorders, 12, 397403.Google Scholar
Owen, J. A. (2011). Psychopharmacology. In Levenson, J. L. (Ed.). The American Psychiatric Publishing Textbook of Psychosomatic Medicine: Psychiatric Care of the Medically Ill (pp. 9571020). Washington, DC: American Psychiatric Publishing.Google Scholar
Page-Sharp, M., Kristensen, J. H., Hackett, L. P., et al. (2006). Transfer of lamotrigine into breast milk. The Annals of Pharmacotherapy, 40, 14701471.Google Scholar
Patelis-Siotis, I. (2001). Cognitive-behavioral therapy: Applications for the management of bipolar disorder. Bipolar Disorders, 3, 110.Google Scholar
Payne, J. L., Roy, P. S., Murphy-Eberenz, K., et al. (2007). Reproductive cycle-associated mood symptoms in women with major depression and bipolar disorder. Journal of Affective Disorders, 99, 221229.Google Scholar
Pearlstein, T., Howard, M., Salisbury, A., et al. (2009). Postpartum depression. American Journal of Obstetrics and Gynecology, 200, 357364.Google Scholar
Pennell, P. B. (2003). Antiepileptic drug pharmacokinetics during pregnancy and lactation. Neurology, 61(6 Suppl. 2), S35S42.Google Scholar
Pennell, P. B., Klein, A. M., Browning, N., et al. (2012). Differential effects of antiepileptic drugs on neonatal outcomes. Epilepsy & Behavior, 24, 449456.Google Scholar
Pennell, P. B., Peng, L., Newport, D. J., et al. (2008). Lamotrigine in pregnancy: Clearance, therapeutic drug monitoring, and seizure frequency. Neurology, 70, 21302136.Google Scholar
Perlis, R. H., Ostacher, M. J., Patel, J. K., et al. (2006). Predictors of recurrence in bipolar disorder: Primary outcomes from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). FOCUS: The Journal of Lifelong Learning in Psychiatry, 4, 553561.Google Scholar
Perugi, G. and Akiskal, H. S. (2002). The soft bipolar spectrum redefined: Focus on the cyclothymic, anxious-sensitive, impulse-dyscontrol, and binge-eating connection in bipolar II and related conditions. Psychiatric Clinics of North America, 25, 713737.Google Scholar
Pfuhlmann, B., Stoeber, G., and Beckmann, H. (2002). Postpartum psychoses: Prognosis, risk factors, and treatment. Current Psychiatry Reports, 4, 185190.Google Scholar
Pinheiro, K.A.T., Coelho, F.M.C., Quevedo, L. Á., et al. (2011). Paternal postpartum mood: Bipolar episodes? Revista Brasileira de Psiquiatria, 33, 283286.Google Scholar
Piontek, C. M., Baab, S., Peindl, K. S., et al. (2000). Serum valproate levels in 6 breastfeeding mother-infant pairs. The Journal of Clinical Psychiatry, 61, 170172.Google Scholar
Porter, T. and Gavin, H. (2010). Infanticide and neonaticide: A review of 40 years of research literature on incidence and causes. Trauma, Violence, & Abuse, 11, 99112.Google Scholar
Post, R. M. and Kalivas, P. (2013). Bipolar disorder and substance misuse: Pathological and therapeutic implications of their comorbidity and cross-sensitisation. The British Journal of Psychiatry, 202, 172176.Google Scholar
Pynnönen, S. and Sillanpää, M. (1975). Carbamazepine and mother’s milk. The Lancet, 306, 563.Google Scholar
Pynnönen, S., Kanto, J., Sillanpää, M., et al. (1977). Carbamazepine: Placental transport, tissue concentrations in foetus and newborn, and level in milk. Acta Pharmacologica et Toxicologica, 41, 244253.Google Scholar
Ramchandani, P., Stein, A., Evans, J., et al. (2005). Paternal depression in the postnatal period and child development: A prospective population study. The Lancet, 365, 22012205.Google Scholar
Rampono, J., Kristensen, J. H., Ilett, K. F., et al. (2007). Quetiapine and breast feeding. The Annals of Pharmacotherapy, 41, 711714.Google Scholar
Ranga Rama Krishnan, K. (2005). Psychiatric and medical comorbidities of bipolar disorder. Psychosomatic Medicine, 67, 18.Google Scholar
Ratnayake, T. and Libretto, S. E. (2002). No complications with risperidone treatment before and throughout pregnancy and during the nursing period. Journal of Clinical Psychiatry, 63, 7677.Google Scholar
Rea, M. M., Tompson, M. C., Miklowitz, D. J., et al. (2003). Family-focused treatment versus individual treatment for bipolar disorder: Results of a randomized clinical trial. Journal of Consulting and Clinical Psychology, 71, 482492.Google Scholar
Reddy, D. S. (2010). Clinical pharmacokinetic interactions between antiepileptic drugs and hormonal contraceptives. Expert Review of Clinical Pharmacology, 3, 183192.Google Scholar
Reimers, A., Helde, G., and Brodtkorb, E. (2005). Ethinyl estradiol, not progestogens, reduces lamotrigine serum concentrations. Epilepsia, 46, 14141417.Google Scholar
Reis, M. and Källén, B. (2008). Maternal use of antipsychotics in early pregnancy and delivery outcome. Journal of Clinical Psychopharmacology, 28, 279288.Google Scholar
Ribolsi, M., Magni, V., and Rubino, I.A. (2010). Quetiapine fumarate for schizophrenia and bipolar disorder in young patients. Drugs Today, 46, 581587.Google Scholar
Rihtman, T., Parush, S., and Ornoy, A. (2012). Preliminary findings of the developmental effects of in utero exposure to topiramate. Reproductive Toxicology, 34, 308311.Google Scholar
Rohde, A. and Marneros, A. (1993). Postpartum psychoses: Onset and long-term course. Psychopathology, 26, 203209.Google Scholar
Ross, L. E., Murray, B. J., and Steiner, M. (2005). Sleep and perinatal mood disorders: A critical review. Journal of Psychiatry and Neuroscience, 30, 247256.Google Scholar
Rubin, E. T., Lee, A., and Ito, S. (2004). When breastfeeding mothers need CNS-acting drugs. The Canadian Journal of Clinical Pharmacology, 11, e257e266.Google Scholar
Ružić, K., Dadić-Hero, E., Knez, R., et al. (2009). Pregnancy and atypical antipsychotics. Psychiatria Danubina, 21, 368370.Google Scholar
Sajatovic, M., Friedman, S. H., Schuermeyer, I. N., et al. (2006). Menopause knowledge and subjective experience among peri- and postmenopausal women with bipolar disorder, schizophrenia and major depression. The Journal of Nervous and Mental Disease, 194, 173178.Google Scholar
Sala, R., Goldstein, B. I., Morcillo, C., et al. (2012). Course of comorbid anxiety disorders among adults with bipolar disorder in the US population. Journal of Psychiatric Research, 46, 865872.Google Scholar
Sands, J. M. and Bichet, D. G. (2006). Nephrogenic diabetes insipidus. Annals of Internal Medicine, 144, 186194.Google Scholar
Saunders, E. F., Fitzgerald, K. D., Zhang, P., et al. (2012). Clinical features of bipolar disorder comorbid with anxiety disorders differ between men and women. Depression and Anxiety, 29, 739746.Google Scholar
Scott, J. (2003). Group psychoeducation reduces recurrence and hospital admission in people with bipolar disorder. Evidence-Based Mental Health, 6, 115.Google Scholar
Sedky, K., Nazir, R., Joshi, A., et al. (2012). Which psychotropic medications induce hepatotoxicity? General Hospital Psychiatry, 34, 5361.Google Scholar
Sharma, V. (2009). Management of bipolar II disorder during pregnancy and the postpartum period-Motherisk update 2008. The Canadian Journal of Clinical Pharmacology, 16, e33e41.Google Scholar
Sharma, V., Burt, V., and Ritchie, H. (2009). Bipolar II postpartum depression: Detection, diagnosis, and treatment. American Journal of Psychiatry 166, 12171221.Google Scholar
Sharma, V. and Khan, M. (2010). Identification of bipolar disorder in women with postpartum depression. Bipolar Disorders, 12, 335340.Google Scholar
Sharma, V., Khan, M., Corpse, C., et al. (2008). Missed bipolarity and psychiatric comorbidity in women with postpartum depression. Bipolar Disorders, 10, 742747.Google Scholar
Sharma, V. and Mazmanian, D. (2003). Sleep loss and postpartum psychosis. Bipolar Disorders, 5, 98105.Google Scholar
Sharma, V., Smith, A., and Khan, M. (2004). The relationship between duration of labour, time of delivery, and puerperal psychosis. Journal of Affective Disorders, 83, 215220.Google Scholar
Shimoyama, R., Ohkubo, T., and Sugawara, K. (2000). Monitoring of carbamazepine and carbamazepine 10, 11-epoxide in breast milk and plasma by high-performance liquid chromatography. Annals of Clinical Biochemistry, 37, 210215.Google Scholar
Shor, S., Koren, G., and Nulman, I. (2007). Teratogenicity of lamotrigine. Canadian Family Physician, 53, 10071009.Google Scholar
Sit, D., Rothschild, A. J., and Wisner, K. L. (2006). A review of postpartum psychosis. Journal of Women’s Health, 15, 352368.Google Scholar
Smoller, J. W. and Finn, C. T. (2003). Family, twin, and adoption studies of bipolar disorder. American Journal of Medical Genetics Part C, 123C, 4858.Google Scholar
Spinelli, M. G. (2001). A systematic investigation of 16 cases of neonaticide. American Journal of Psychiatry, 158, 811813.Google Scholar
Stahl, M. M., Neiderud, J., and Vinge, E. (1997). Thrombocytopenic purpura and anemia in a breast-fed infant whose mother was treated with valproic acid. Journal of Pediatrics, 130, 10011003.Google Scholar
Stange, J. P., Eisner, L. R., Hölzel, B. K., et al. (2011). Mindfulness-based cognitive therapy for bipolar disorder: Effects on cognitive functioning. Journal of Psychiatric Practice, 17, 410419.Google Scholar
Starr, C. and McMillan, B. (2011). Human biology (9th ed.). Belmont, CA: Cengage Learning.Google Scholar
Stowe, Z. N. (2007). The use of mood stabilizers during breastfeeding. The Journal of Clinical Psychiatry, 68(Suppl. 9), 2228.Google Scholar
Suominen, K., Mantere, O., Valtonen, H., et al. (2009). Gender differences in bipolar disorder type I and II. Acta Psychiatrica Scandinavica, 120, 464473.Google Scholar
Swartz, H. A. and Frank, E. (2001). Psychotherapy for bipolar depression: A phase-specific treatment strategy? Bipolar Disorders, 3, 1122.Google Scholar
Tadger, S., Paleacu, D., and Barak, Y. (2011). Quetiapine augmentation of antidepressant treatment in elderly patients suffering from depressive symptoms: A retrospective chart review. Archives of Gerontology and Geriatrics, 53, 104105.Google Scholar
Tettenborn, B. (2006). Management of epilepsy in women of childbearing age. CNS Drugs, 20, 373387.Google Scholar
Tomson, D., Pilling, S., Blake, F., et al. (2007). Antenatal and postnatal mental health: Clinical management and service guidance (NICE Clinical Guideline No. 45). Manchester: National Institute for Health and Clinical Excellence. Available at: www.nice.org.uk/nicemedia/live/11004/30433/30433.pdf (Accessed December 1, 2013).Google Scholar
Tomson, T., Landmark, C. J., and Battino, D. (2013). Antiepileptic drug treatment in pregnancy: Changes in drug disposition and their clinical implications. Epilepsia, 54, 405.Google Scholar
Trapolini, T., McMahon, C. A., and Ungerer, J. A. (2007). The effect of maternal depression and marital adjustment on young children’s internalizing and externalizing behaviour problems. Child: Care, Health and Development, 33, 794803.Google Scholar
Vajda, F. J. E., O’Brien, T.J., Graham, J., et al. (2013). Associations between particular types of fetal malformation and antiepileptic drug exposure in utero. Acta Neurologica Scandinavica, 4, 228234.Google Scholar
Vajda, F. J. E., O’Brien, T. J., Hitchcock, A., et al. (2003). The Australian registry of anti-epileptic drugs in pregnancy: Experience after 30 months. Journal of Clinical Neuroscience, 10, 543549.Google Scholar
Valdimarsdóttir, U., Hultman, C. M., Harlow, B., et al. (2009). Psychotic illness in first-time mothers with no previous psychiatric hospitalizations: A population-based study. PLoS Medicine, 6, e1000013.Google Scholar
Van den Bergh, B. R., Mulder, E. J., Mennes, M., et al. (2005). Antenatal maternal anxiety and stress and the neurobehavioral development of the fetus and child: Links and possible mechanisms: A review. Neuroscience & Biobehavioral Reviews, 29, 237258.Google Scholar
van Dijk, M. H., Bulk, S., van Oppen, A.C.C., et al. (2012). 1508 spectrum of neural tube defects after prenatal antiepileptic drug exposure: Extensive case series. Archives of Disease in Childhood, 97(Suppl. 2), A427A428.Google Scholar
Vemuri, M. and Williams, K. (2011). Treating bipolar disorder during pregnancy: Optimal outcomes require careful preconception planning, medication risk/benefit analysis. Current Psychiatry, 10, 5866.Google Scholar
Vieta, E. and Morralla, C. (2010). Prevalence of mixed mania using 3 definitions. Journal of Affective Disorders, 125, 6173.Google Scholar
Vieta, E. and Valentí, M. (2013). Pharmacological management of bipolar depression: Acute treatment, maintenance, and prophylaxis. CNS Drugs, 27, 515529.Google Scholar
Viguera, A. C., Baldessarini, R. J., and Tondo, L. (2001). Response to lithium maintenance treatment in bipolar disorders: Comparison of women and men. Bipolar Disorders, 3, 245252.Google Scholar
Viguera, A. C., Cohen, L. S., Baldessarini, R. J., et al. (2002). Managing bipolar disorder during pregnancy: Weighing the risks and benefits. Canadian Journal of Psychiatry, 47, 426436.Google Scholar
Viguera, A. C., Cohen, L. S., Bouffard, S., et al. (2002). Reproductive decisions by women with bipolar disorder after prepregnancy psychiatric consultation. American Journal of Psychiatry, 159, 21022104.Google Scholar
Viguera, A. C., Newport, D., Ritchie, J., et al. (2007). Lithium in breast milk and nursing infants: Clinical implications. American Journal of Psychiatry, 164, 342345.Google Scholar
Viguera, A. C., Nonacs, R., Cohen, L. S., et al. (2000). Risk of recurrence of bipolar disorder in pregnant and nonpregnant women after discontinuing lithium maintenance. American Journal of Psychiatry, 157, 179184.Google Scholar
Viguera, A. C., Tondo, L., Koukopoulos, A. E., et al. (2011). Episodes of mood disorders in 2,252 pregnancies and postpartum periods. American Journal of Psychiatry, 168, 11791185.Google Scholar
Viguera, A., Whitfield, T., Baldessarini, R., et al. (2007). Risk of recurrence in women with bipolar disorder during pregnancy: Prospective study of mood stabilizer discontinuation. American Journal of Psychiatry, 164, 18171824.Google Scholar
Vinten, J., Adab, N., Kini, U., et al. (2005). Neuropsychological effects of exposure to anticonvulsant medication in utero. Neurology, 64, 949954.Google Scholar
Wang, P. S., Lane, M., Olfson, M., et al. (2005). Twelve-month use of mental health services in the United States: Results from the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 629640.Google Scholar
Wegner, I., Edelbroek, P. M., Bulk, S., et al. (2009). Lamotrigine kinetics within the menstrual cycle, after menopause, and with oral contraceptives. Neurology, 73, 13881393.Google Scholar
Weinstock, M. (2005). The potential influence of maternal stress hormones on development and mental health of the offspring. Brain, Behavior, and Immunity, 19, 296308.Google Scholar
Weissman, M. M., Wickramaratne, P., Nomura, Y., et al. (2006). Offspring of depressed parents: 20 years later. American Journal of Psychiatry, 163, 10011008.Google Scholar
Wieck, A. and Gregoire, A. (2009). Pharmacological management and ECT in childbearing women with psychiatric disorders. Psychiatry, 8, 3337.Google Scholar
Williams, J. M. G., Alatiq, Y., Crane, C., et al. (2008). Mindfulness-based cognitive therapy (MBCT) in bipolar disorder: Preliminary evaluation of immediate effects on between-episode functioning. Journal of Affective Disorders, 107, 275279.Google Scholar
Wisner, K. L., Leckman-Westin, E., Finnerty, M., et al. (2011). Valproate prescription prevalence among women of childbearing age. Psychiatric Services, 62, 218220.Google Scholar
Wisner, K. L. and Perel, J. M. (1998). Serum levels of valproate and carbamazepine in breastfeeding mother–infant pairs. Journal of Clinical Psychopharmacology, 18, 167169.Google Scholar
Wozniak, J., Faraone, S. V., Martelon, M., et al. (2012). Further evidence for robust familiality of pediatric bipolar I disorder: Results from a very large controlled family study of pediatric bipolar I disorder and a meta-analysis. The Journal of Clinical Psychiatry, 73, 13281334.Google Scholar
Yang, A. C., Yang, C. H., Hong, C. J., et al. (2013). Effects of age, sex, index admission, and predominant polarity on the seasonality of acute admissions for bipolar disorder: A population-based study. Chronobiology International, 30, 478485.Google Scholar
Yatham, L. N., Kennedy, S. H., O’Donovan, C., et al. (2005). Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: Consensus and controversies. Bipolar Disorders, 7(Suppl. 3), 569.Google Scholar
Yatham, L. N., Kennedy, S. H., Parikh, S. V., et al. (2013). Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: Update 2013. Bipolar Disorders, 15, 144.Google Scholar
Yonkers, K. A., Wisner, K.L., Stowe, Z., et al. (2004). Management of bipolar disorder during pregnancy and the postpartum period. American Journal of Psychiatry, 161, 608620.Google Scholar

References

Abbs, B., Liang, L., et al. (2011). Covariance modeling of MRI brain volumes in memory circuitry in schizophrenia: Sex differences are critical. NeuroImage 56(4): 18651874.Google Scholar
Abel, K. M., Allin, M. A., van Amelsvoort., T., Hemsley., D., Geyer, M. A. (2007). The indirect serotonergic agonist d-fenfluramine and prepulse inhibition in healthy men. Neuropharmacology 52: 10881094.Google Scholar
Abel, K. M., Svensson, A., Dal, H., Dalman, C., Susser, E., Rai, D., Idring, S., Magnusson, C. (2013). Deviance fetal growth and autism spectrum disorder. American Journal of Psychiatry 170:391398.Google Scholar
Abel, K. M., Webb, R., Salmon, M., Wan, M. W., Appleby, L. (2005). Prevalence and predictors of parenting outcomes in a cohort of mothers with schizophrenia admitted for joint mother and baby psychiatric care in England. Journal of Clinical Psychiatry 66: 781789.Google Scholar
Aleman, A., Kahn, R. S., Selten, J. P. (2003). Sex differences in the risk of schizophrenia: evidence from meta-analysis. Archives of General Psychiatry, 60 (6) 565571.Google Scholar
Alvarez-Jimenez, M., Priede, A., et al. (2012). Risk factors for relapse following treatment for first episode psychosis: A systematic review and meta-analysis of longitudinal studies. Schizophrenia Research 139: 116128.Google Scholar
Angermeyer., M. C., Kühn, L., Goldstein, J. M. (1990). Gender and the course of schizophrenia: Differences in treated outcomes. Schizophrenia Bulletin 16: 293307.Google Scholar
Bee, P., Berzins, K., Calam, R., Pryjmachuk, S., Abel, K. M. (2013). Defining quality of life in the children of parents with severe mental illness: A preliminary stakeholder-led model. PLOS One, 8(9), doi: 10.1371/journal.pone.0073739Google Scholar
Bee, P., Bower, P., Byford, S., Churchill, R., Calam, R., Stallard, P., Pryjmachuk, S., Berzins, K., Cary, M., Wan, M., Abel, K. (2014). The clinical-effectiveness, cost-effectiveness and acceptability of community-based interventions aimed at improving or maintaining quality of life in children of parents with serious mental illness; a systematic evidence synthesis. Health Technology Assessment, 18(8), doi: 10.3310/hta18080Google Scholar
Bergemann, N., Parzer, P., Nagl, I., Salbach, B., Runnebaum, B., Mundt, Ch., Resch., F. (2002). Acute psychiatric admission and menstrual cycle phase in women with schizophrenia. Archives of Women’s Mental Health 5 119126.Google Scholar
Bertholet, L., Meunier, C., et al. (2014). Sex biased spatial strategies relying on the integration of multimodal cues in a rat model of schizophrenia: Impairment in predicting future context? Behavioural Brain Research 262: 109117.Google Scholar
Buckley, P. F., Miller, B. J., et al. (2009). Psychiatric comorbidities and schizophrenia. Schizophrenia Bulletin 35: 383402.Google Scholar
Burman, B., Mednick, S. A., et al. (1987). Children at high risk for schizophrenia: Parent and offspring perceptions of family relationships. Journal of Abnormal Psychology 96(4): 364366.Google Scholar
Bychkov, E., Ahmed, M. R., et al. (2011). Sex differences in the activity of signalling pathways and expression of G-protein-coupled receptor kinases in the neonatal ventral hippocampal lesion model of schizophrenia. The International Journal of Neuropsychopharmacology / Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum 14(1): 115.Google Scholar
Castle, D. J., Abel, K. M., Takei, N., Murray, R. M. (1995). Gender differences in schizophrenia: Hormonal effect or subtypes? Schizophrenia Bulletin, 21:112.Google Scholar
Castle, D. J., Wessley, S., Murray, R. M. (1993). Sex and schizophrenia: Effects of diagnostic stringency, and associations with premorbid variables. British Journal of Psychiatry 93(162)658664.Google Scholar
Chen, Y. W., Kao, H. Y., et al. (2014). A sex- and region-specific role of akt1 in the modulation of methamphetamine-induced hyperlocomotion and striatal neuronal activity: Implications in schizophrenia and methamphetamine-induced psychosis. Schizophrenia Bulletin 40(2): 388398.Google Scholar
Donatelli, J. L., Seidman, L. J., Goldstein, J. M., Tsuang, M. T., Buka, S. L. (2010) Children of parents with affective and non-affective psychoses: A longitudinal study of behavior problems. American Journal of Psychiatry 167(11):13311338.Google Scholar
Drake, R., Addington, J., Viswanathan, A., Lewis, S., Cotter, J., Yung, A., Abel, K. (2015). How age and gender predict illness course in a first-episode non-affective psychosis cohort. Journal of Clinical Psychiatry, eScholarID:252717.Google Scholar
Elsabagh, S., Premkumar, P., et al. (2009). A longer duration of schizophrenic illness has sex-specific associations within the working memory neural network in schizophrenia. Behavioural Brain Research 201(1): 4147.Google Scholar
Emsley, R., Rabinowitz, J., et al. (2007). Remission in early psychosis: Rates, predictors, and clinical and functional outcome correlates. Schizophrenia Research 89: 129139.Google Scholar
Endo, M., Daiguji, M., Asano, Y., Yamashita, I., Takahashi., S. (1978). Periodic psychosis recurring in association with menstrual cycle. Journal of Clinical Psychiatry 39: 456466.Google Scholar
Falkov, A. (2013). The Family Model Handbook: An integrated approach to supporting mentally ill parents and their children. Teddington: Pavilion.Google Scholar
Flor-Henry, P. The influence of gender on psychopathology. (1983). In: Flor-Henry, P. (ed.), Cerebral Basis of Psychopathology (Chapter 5, pp. 97116). Littleton, MA: Wright-PSG Inc.Google Scholar
Goldman, P. S., Crawford, H. T., Stokes, L. P., Galkin, T. W., Rosvold, H. E. (1974). Sex-dependent behavioral effects of cerebral cortical lesions in the developing rhesus monkey. Science, 186: 540542.Google Scholar
Goldstein, J. M. (1997). Sex differences in schizophrenia: Epidemiology, genetics, and the brain. Internat’l Rev Psychiatry: The Neuropsychiatry of Schizophrenia. 9: 399408. Pearlson, G. D., Slavney, P. R. (eds.).Google Scholar
Goldstein, J. M. (1995). The impact of gender on understanding the epidemiology of schizophrenia: A critical review. In: Seeman, M. V. (ed.), Gender and psychopathology (pp. 159199). Washington DC: American Psychiatric Association Press.Google Scholar
Goldstein, J. M,, Cherkerzian, S., et al. (2014). Prenatal maternal immune disruption and sex-dependent risk for psychoses. Psychological Medicine 44(15):3249-3261.Google Scholar
Goldstein, J. M., Lancaster, K., et al. (2015) Sex differences, hormones, and fMRI stress response circuitry deficits in psychoses. Psychiatry Research 232(3):226236.Google Scholar
Goldstein, J. M., Link, B. G. (1988). Gender and the expression of schizophrenia. J Psychiatry Research, 22: 141155.Google Scholar
Goldstein, J. M., Seidman, L. J., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex 11(6): 490497.Google Scholar
Goldstein, J. M., Seidman, L. J., et al. (2002). Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Archives of General Psychiatry 59(2): 154164.Google Scholar
Goldstein, J. M., Walder, D. (2006). Sex differences in schizophrenia: The case for developmental origins and etiological implications. United Kingdom: Oxford University Press.Google Scholar
Goodman, S. (1987). Emory University project on children of disturbed parents. Schizophrenia Bulletin 13: 411422.Google Scholar
Grimm, V. E., Frieder, B. (1985). Differential vulnerability of male and female rats to the timing of various perinatal insults. International Journal of Neuroscience, 27, 155–64.Google Scholar
Grossman, L. S., Harrow, M., Rosen, C., Faull, R., Strauss, G. P. (2008). Sex differences in schizophrenia and other psychotic disorders: A 20-year longitudinal study of psychosis and recovery. Comprehensive Psychiatry, 49(6), 523529.Google Scholar
Gur, R. E., Cowell, P. E., et al. (2000). Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Archives of General Psychiatry 57(8): 761768.Google Scholar
Häfner, H., Maurer, K., Loffler, W., Riecher-Rössler, A. (1993). The influence of age and sex on the onset and early course of schizophrenia. British Journal of Psychiatry, 162, 8086.Google Scholar
Hahn, C., Neuhaus, A. H., et al. (2011). Smoking reduces language lateralization: A dichotic listening study with control participants and schizophrenia patients. Brain and Cognition 76(2): 300309.Google Scholar
Hambrecht, M., Maurer., K., Häfner, H., Sartorius, N. (1992). Transnational stability of gender differences in schizophrenia. Eur Arch Psychiatr & Neurol Sci, 242, 612.Google Scholar
Harrison, G., Hopper, K., et al. (2001). Recovery from psychotic illness: a 15- and 25-year international follow-up study. British Journal of Psychiatry 178, 506–17.Google Scholar
Hoff, A. L., Kremen, W. S. (2001). Association of estrogen levels with neuropsychological performance in women with schizophrenia. American Journal of Psychiatry 158(7): 11341139.Google Scholar
Holley, S. M., Wang, E. A., et al. (2013). Frontal cortical synaptic communication is abnormal in Disc1 genetic mouse models of schizophrenia. Schizophrenia Research 146(1–3): 264272.Google Scholar
Huber, T. J., Borsutzky, M., Schneider, U., Emrich, H. M. (2004). Psychotic disorders and gonadal function: Evidence supporting the estrogen hypothesis. Acta Psychiatrica Scandinavica 109: 269274.Google Scholar
Irle, E., Lange, C., et al. (2011). Hippocampal size in women but not men with schizophrenia relates to disorder duration. Psychiatry Research 192(3): 133139.Google Scholar
Jablensky, A. (2003). Schizophrenia: the epidemiological horizon. In: Hirsch, S. R. and Weinberger, D. R. (eds.), Schizophrenia (pp. 203231). Oxford: Blackwell Science.Google Scholar
Jablensky, A., Cole, S. W. (1997). Is the earlier age at onset of schizophrenia in males a confounded finding? Results from a cross-cultural investigation. British Journal of Psychiatry, 170, 234240.Google Scholar
Jablensky, A., McGrath, J., Herrman, H., Castle, D., Gureje, O., Evans, A., Carr, V., Morgan, V., Korten, A., Harvey, C. (2000). Psychotic disorders in urban areas: An overview of the study on low prevalence disorders. Australian and New Zealand Journal of Psychiatry, 34:221236.Google Scholar
Jablensky, A., Sartorius, N., Ernberg, E., Anker, M., Korten, A., Cooper, J. E., Day, R., Bertelsen, A. (1992). Schizophrenia: Manifestations, incidence and course in different cultures. A World Health Organization ten country study. Psychological Medicine Monograph, Suppl 20.Google Scholar
Jimenez, J. A., Mancini-Marie, A., et al. (2010). Disturbed sexual dimorphism of brain activation during mental rotation in schizophrenia. Schizophrenia Research 122(1–3): 5362.Google Scholar
Joshi, D., Fung, S. J., et al. (2012). Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia. Biological Psychiatry 72(9): 725733.Google Scholar
Jung, H. T., Kim, D. W., et al. (2012). Reduced source activity of event-related potentials for affective facial pictures in schizophrenia patients. Schizophrenia Research 136(1–3): 150159.Google Scholar
Kumar, R., Marks, M., Platz, C., Yoshida, K. (1995). Clinical survey of a psychiatric mother and baby unit: characteristics of 100 consecutive admissions. Journal of Affective Disorders 33(1): 1122.Google Scholar
Kunimatsu, N., Aoki, S., et al. (2012). Tract-specific analysis of white matter integrity disruption in schizophrenia. Psychiatry Research 201(2): 136143.Google Scholar
Lee, S. H., Kim, E. Y., et al. (2010). Event-related potential patterns and gender effects underlying facial affect processing in schizophrenia patients. Neuroscience Research 67(2):172180.Google Scholar
Leung, A., Chue, P. (2000). Sex differences in schizophrenia, a review of the literature. Acta Psychiatrica Scandinavica, Supplementum 40: 338.Google Scholar
Lewis, S., Tarrier, N., et al.(2002). Randomised controlled trial of cognitive-behavioural therapy in early schizophrenia: acute-phase outcomes. British Journal of Psychiatry, Suppl. 43: s91–7.Google Scholar
Manuseva, N., Novotni, A., et al. (2012). Some QEEG parameters and gender differences in schizophrenia patients. Psychiatr Danub 24(1): 5156.Google Scholar
Martins-de-Souza, D., Schmitt, A., et al. (2010). Sex-specific proteome differences in the anterior cingulate cortex of schizophrenia. Journal of Psychiatric Research 44(14): 989991.Google Scholar
McCreadie, R. G., Wiles, D., et al. (1989). The Scottish first episode schizophrenia study. VII. Two-year follow-up. Scottish Schizophrenia Research Group. Acta Psychiatrica Scandinavica 80, 597602.Google Scholar
McGrath, J., Saha, S., Chant, D., Welham, J. (2008). Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiologic Reviews. 30:6776.Google Scholar
McGrath, J., Saha, S., et al. (2004). A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Medicine 2(13).Google Scholar
Meaney, M. J., Szyf, M. (2005). Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neurosciences 28: 456463.Google Scholar
Mendrek, A., Jiménez, J., et al. (2011). Correlations between sadness-induced cerebral activations and schizophrenia symptoms: An fMRI study of sex differences. European Psychiatry 26(5): 320326.Google Scholar
Moldin, S. O. (2000). Gender and schizophrenia: An overview. In: Frank, E. (Ed.), Gender and its effects on psychopathology (pp. 169186). Washington, DC: American Psychiatric Press, Inc.Google Scholar
Morgan, V. A., Castle, D. J., Jablensky, A. V. (2008). Do women express and experience psychosis differently from men? Epidemiological evidence from the Australian National Study of Low Prevalence (Psychotic) Disorders. Australian & New Zealand Journal of Psychiatry, 42(1):7482.Google Scholar
Nopoulos, P., Flaum, M., et al. (1997). Sex differences in brain morphology in schizophrenia. American Journal of Psychiatry 154(12): 16481654.Google Scholar
O’Tuathaigh, C. M., Harte, M., et al. (2010). Schizophrenia-related endophenotypes in heterozygous neuregulin-1 ‘knockout’ mice. European Journal of Neuroscience 31(2): 349358.Google Scholar
Perälä, J., Suvisaari, J., et al. (2007). Lifetime prevalence of psychotic and bipolar I disorders in a general population. Archives of General Psychiatry 64(1):1928. doi:10.1001/archpsyc.64.1.19.Google Scholar
Pryce, C. R., Dettling, A. C., et al. (2004). Deprivation of parenting disrupts development of homeostatic and reward systems in marmoset monkey offspring. Biological Psychiatry 56: 7279.Google Scholar
Radulescu, E., Sambataro, F., et al. (2013). Effect of schizophrenia risk-associated alleles in SREB2 (GPR85) on functional MRI phenotypes in healthy volunteers. Neuropsychopharmacology 38(2): 341349.Google Scholar
Rajkumar, S., Thara, R. (1989). Factors affecting relapse in schizophrenia. Schizophrenia Research 2:403–9.Google Scholar
Rantakallio, P., von Wendt, L. (1985). Trauma to the nervous system and its sequelae in a one-year birth cohort followed up to the age of 14 years. Journal of Epidemiology & Community Health 39(4):353356.Google Scholar
Rector, N. A., Seeman, M. V. (1992). Auditory hallucinations in women and men. Schizophrenia Research 7: 233236.Google Scholar
Robinson, D., Woerner, M. G., et al. (1999). Predictors of relapse following response from a first episode of schizophrenia or schizoaffective disorder. Archives of General Psychiatry 56, 241247.Google Scholar
Roy, M. A., Maziade, M., Labbé, A., Mérette, C. (2001). Male gender is associated with deficit schizophrenia: a meta-analysis Schizophrenia Research 47 (2–3), 141147.Google Scholar
Saha, S., Chant, D., Welham, J., McGrath, J. (2005). A systematic review of the prevalence of schizophrenia. PLoS Med 2: e141.Google Scholar
Salmon, M., Abel, K. M., Cordingly, L., Friedman, T., Appleby, L. (2003). Clinical and parenting skills outcomes following joint mother-baby psychiatric admission. Australian and New Zealand Journal of Psychiatry 37(5):556562.Google Scholar
Salokangas, R.K.R. (1997a). Living situation, social network and outcome in schizophrenia: A five-year prospective follow-up study. Acta Psychiatrica Scandanavica 96: 459468.Google Scholar
Salokangas, R.K.R. (1997b). Structure of schizophrenic symptomatology and its changes over time: Prospective factor analytical study. Acta Psychiatrica Scandanavica 95, 3239.Google Scholar
Sameroff, A., Seifer, R., et al. (1987). Early indicators of developmental risk: Rochester longitudinal study. Schizophrenia Bulletin 13: 383394.Google Scholar
Sartorius, N., Jablensky, A., Korten, A., Ernberg, G., Anker, M., Cooper, J. E., Day, R. (1986). Early manifestations and first-contact incidence of schizophrenia in different cultures. A preliminary report on the initial evaluation phase of the WHO Collaborative Study on determinants of outcome of severe mental disorders. Psychological Medicine 16(4):909928.Google Scholar
Savadjiev, P., Whitford, T. J., et al. (2013). Sexually Dimorphic White Matter Geometry Abnormalities in Adolescent Onset Schizophrenia. Cerebral Cortex 24(5): 13891396.Google Scholar
Schulz, K. M., Molenda-Figueira, H. A., et al. (2009). Back to the future: The organizational-activational hypothesis adapted to puberty and adolescence. Hormones and Behavior 55(5): 597604.Google Scholar
Selten, J. P., Veen, N. D., Hoek, H. W., Laan, W., Schols, D., van der Tweel, I., Feller, W., Kahn, R. S. (2007). Early course of schizophrenia in a representative Dutch incidence cohort. Schizophrenia Research 97(1–3): 7987.Google Scholar
Shepherd, A. M., Matheson, S. L., et al. (2012). Systematic meta-analysis of insula volume in schizophrenia. Biological Psychiatry 72(9): 775784.Google Scholar
Shipman, S. L., Baker, E. K., et al. (2009). Absence of established sex differences in patients with schizophrenia on a two-dimensional object array task. Psychiatry Research 166(2–3): 158165.Google Scholar
Somers, V. (2007). Schizophrenia: The impact of parental illness on children. British Journal of Social Work 37: 13191334.Google Scholar
Stanley, N., Penhale, B., Rioran, D., Barbour, R. S., Holdern, S. (2003). Child Protection and Mental Health Services: Interprofessional responses to the needs of mothers. Bristol: Policy Press.Google Scholar
Sumich, A., Anilkumar, A. P., et al. (2014). Sex specific event-related potential (ERP) correlates of depression in schizophrenia. Psychiatr Danub 26(1): 2733.Google Scholar
Susser, E., Wanderling, J. (1994). Epidemiology of nonaffective acute remitting psychosis: sex and sociocultural setting. Archives of General Psychiatry 51:294301.Google Scholar
Szeszko, P. R., Strous, R. D., Goldman, R. S., Ashtari, M., Knuth, K. H., Lieberman, J. A., Bilder, R. M. (2002). Neuropsychological correlates of hippocampal volumes in patients experiencing a first episode of schizophrenia. American Journal of Psychiatry 159(2): 217226.Google Scholar
Thara., R., Rajkumar, S. (1992). Gender differences in schizophrenia. Results of a follow-up study from India. Schizophrenia Research 7(1):6570.Google Scholar
Thormodsen, R., Rimol, L. M., et al. (2013). Age-related cortical thickness differences in adolescents with early-onset schizophrenia compared with healthy adolescents. Psychiatry Research 214(3): 190196.Google Scholar
Tien, A. Y. (1991). Distributions of hallucinations in the population. Psychological Medicine 26, 203208.Google Scholar
Uehara-Aoyama, K., Nakamura, M., et al. (2011). Sexually dimorphic distribution of orbitofrontal sulcogyral pattern in schizophrenia. Psychiatry and Clinical Neurosciences 65(5): 483489.Google Scholar
UK Department of Health (2002). Into the Mainstream. http://webarchive.nationalarchives.gov.uk/+/www.dh.gov.uk/en/Consultations/Closedconsultations/DH_4075478 (accessed October 10, 2015).Google Scholar
Vazquez-Barquero, J. L., Cuesta Nunez, M. J., Herrera Castanedo, S., Diez Manrique, J. F., Pardo, G., Dunn, G. (1996). Sociodemographic and clinical variables as predictors of the diagnostic characteristics of first episodes of schizophrenia. Acta Psychiatrica Scandinavica 94(3):149155.Google Scholar
Videbech, P., Gouliaev, G. (1995). First admission with puerperal psychosis: 7-14 years of follow-up. Acta Psychiatrica Scandinavica 91(3):167173.Google Scholar
von Wilmsdorff, M., Sprick, U., et al. (2010). Sex-dependent behavioral effects and morphological changes in the hippocampus after prenatal invasive interventions in rats: Implications for animal models of schizophrenia. Clinics (Sao Paulo) 65(2): 209219.Google Scholar
Walsh, D., Wiersma, D. (2001). Recovery from psychotic illness: A 15- and 25-year international follow-up study. British Journal of Psychiatry 178, 506517.Google Scholar
Weintraub, S. (1987). Risk factors in schizophrenia: The Stony Brook high-risk project. Schizophrenia Bulletin 13: 439450.Google Scholar
Weisinger, B., Greenstein, D., et al. (2013). Lack of gender influence on cortical and subcortical gray matter development in childhood-onset schizophrenia. Schizophrenia Bulletin 39(1): 5258.Google Scholar
Wiersma, D., Nienhuis, F. J., et al. (1998). Natural course of schizophrenic disorders: A 15-year follow up of a Dutch incidence cohort. Schizophrenia Bulletin 24: 7585.Google Scholar
Wiersma, D., Wanderline, J., et al. (2000). Social disability in schizophrenia: Its development and prediction over 15 years in incidence cohorts in six European centres. Psychological Medicine 30: 11551167.Google Scholar
Wildgust, H. J., Beary, M. (2010). Are there modifiable risk factors which will reduce the excess mortality in schizophrenia? Journal of Psychopharmacology 24(4 Suppl): 3750.Google Scholar
Zhang, F., Chen, Q., et al. (2011). Evidence of sex-modulated association of ZNF804A with schizophrenia. Biological Psychiatry 69(10): 914917.Google Scholar

References

Abel, K., Heathlie, H. F., Howard, L. M., & Webb, R. T. (2008). “Sex- and age-specific incidence of fractures in mental illness: a historical population-based cohort study.” J Clin Psychiatry, 69(9), 13981404.Google Scholar
Aichhorn, W., et al. (2006). “Second-generation antipsychotics: is there evidence for sex differences in pharmacokinetic and adverse effect profiles?Drug Saf 29(7): 587598.Google Scholar
Alvares, A. P., et al. (1976). “Interactions between nutritional factors and drug biotransformations in man.” Proc Natl Acad Sci U S A, 73(7), 25012504.Google Scholar
Anthony, M., & Berg, M. J. (2002). “Biologic and molecular mechanisms for sex differences in pharmacokinetics, pharmacodynamics, and pharmacogenetics: Part I.” J Womens Health Gend Based Med, 11(7), 601615.Google Scholar
Armani, F., et al. (2014). “Tamoxifen use for the management of mania: a review of current preclinical evidence.” Psychopharmacology (Berl) 231(4): 639649.Google Scholar
Baggaley, M. (2008). “Sexual dysfunction in schizophrenia: focus on recent evidence.” Hum Psychopharmacol 23(3): 201209.Google Scholar
Bajaj, N., et al. (2010). “Dependence and psychosis with 4-methylmethcathinone (mephedrone) use.” BMJ Case Rep 2010.Google Scholar
Bauer, M., et al. (2014). “Role of lithium augmentation in the management of major depressive disorder.” CNS Drugs 28(4), 331342.Google Scholar
Bellack, A. S., & Mueser, K. T. (1986). “A comprehensive treatment program for schizophrenia and chronic mental illness.” Community Ment Health J 22(3), 175189.Google Scholar
Bennink, R., et al. (1998). “Comparison of total and compartmental gastric emptying and antral motility between healthy men and women.” Eur J Nucl Med 25(9): 12931299.Google Scholar
Bocchetta, A., et al. (2013). “Duration of lithium treatment is a risk factor for reduced glomerular function: a cross-sectional study.” BMC Med 11: 33.Google Scholar
Bonoldi, I., et al. (2013). “Prevalence of self-reported childhood abuse in psychosis: a meta-analysis of retrospective studies.” Psychiatry Res 210(1): 815.Google Scholar
Brabban, A., et al. (2009). “Predictors of outcome in brief cognitive behavior therapy for schizophrenia.” Schizophr Bull 35(5): 859864.Google Scholar
Brunette, M. F. and Drake, R. E. (1997). “Gender differences in patients with schizophrenia and substance abuse.” Compr Psychiatry 38(2): 109116.Google Scholar
Buckley, P. F., Miller, B. J., Lehrer, D. S., & Castle, D. J. (2009). “Psychiatric comorbidities and schizophrenia.” Schizophr Bull 35(2): 383402.Google Scholar
Bundy, H., et al. (2011). “A systematic review and meta-analysis of the fertility of patients with schizophrenia and their unaffected relatives.” Acta Psychiatr Scand 123(2): 98106.Google Scholar
Bustillo, J., et al. (2001). “The psychosocial treatment of schizophrenia: an update.” Am J Psychiatry 158(2): 163175.Google Scholar
Chavez, C., et al. (2010). “The effect of estrogen on dopamine and serotonin receptor and transporter levels in the brain: an autoradiography study.” Brain Res 1321: 5159.Google Scholar
Christodoulou, C. and Kalaitzi, C. (2005). “Antipsychotic drug-induced acute laryngeal dystonia: two case reports and a mini review.” J Psychopharmacol 19(3): 307311.Google Scholar
Dickerson, F. B., et al. (2005). “The token economy for schizophrenia: review of the literature and recommendations for future research.” Schizophr Res 75(2–3), 405416.Google Scholar
Di Forti, M., et al. (2014). “Daily use, especially of high-potency cannabis, drives the earlier onset of psychosis in cannabis users.” Schizophr Bull 40(6): 15091517.Google Scholar
DiNitto, D. M., et al. (2002). “Gender differences in dually-diagnosed clients receiving chemical dependency treatment.” J Psychoactive Drugs 34(1): 105117.Google Scholar
Donoghue, K., et al. (2014). “Cannabis use, gender and age of onset of schizophrenia: Data from the ÆSOP study.” Psychiatry Res 215(3):528532. doi: 10.1016/j.psychres.2013.12.038. Epub 2014 Jan 4.Google Scholar
Filia, S. L., et al. (2014). “Gender differences in characteristics and outcomes of smokers diagnosed with psychosis participating in a smoking cessation intervention.” Psychiatry Res 215(3): 586593.Google Scholar
Fleeman, N., et al. (2011). “Cytochrome P450 testing for prescribing antipsychotics in adults with schizophrenia: systematic review and meta-analyses.” Pharmacogenomics J 11(1), 114.Google Scholar
Garety, P. A., et al. (2008). “Cognitive–behavioural therapy and family intervention for relapse prevention and symptom reduction in psychosis: randomised controlled trial.” Br J Psychiatry 192(6): 412423.Google Scholar
Gaughran, F., et al. (2013). “Improving physical health and reducing substance use in psychosis–randomised control trial (IMPACT RCT): study protocol for a cluster randomised controlled trial.” BMC Psychiatry 13: 263.Google Scholar
Giron, M., et al. (2010). “Efficacy and effectiveness of individual family intervention on social and clinical functioning and family burden in severe schizophrenia: a 2-year randomized controlled study.” Psychol Med 40(1): 7384.Google Scholar
Guada, J., et al. (2009). “The relationships among perceived criticism, family contact, and consumer clinical and psychosocial functioning for African-American consumers with schizophrenia.” Community Ment Health J 45(2): 106116.Google Scholar
Harley, E. W., et al. (2010). “Sexual problems in schizophrenia: prevalence and characteristics. A cross sectional survey.” Soc Psychiatry Psychiatr Epidemiol 45(7): 759766.Google Scholar
Hatfield, B., Huxley, P., Mohamad, H. (1997). “Social factors and compulsory detention of psychiatric patients in the UK. The role of the approved social worker in the 1983 Mental Health Act.” International Journal of Law and Psychiatry 20: 389397.Google Scholar
Hillman, J. K., et al. (2014). “Black women with polycystic ovary syndrome (PCOS) have increased risk for metabolic syndrome and cardiovascular disease compared with white women without PCOS.” Fertil Steril 101(2): 530535.Google Scholar
Huxley, N. A., et al. (2000). “Psychosocial treatments in schizophrenia: a review of the past 20 years.” J Nerv Ment Dis 188(4): 187201.Google Scholar
Inder, W. and Castle, D. (2011) “Antipsychotic-induced hyperprolactinaemia.” Australian and New Zealand Journal of Psychiatry 45: 830837.Google Scholar
Jones, C., et al. (2012). “Cognitive behaviour therapy versus other psychosocial treatments for schizophrenia.” Cochrane Database Syst Rev 4, CD008712.Google Scholar
Kulkarni, J., et al. (2008). “Estrogen in severe mental illness: a potential new treatment approach.” Arch Gen Psychiatry 65(8): 955960.Google Scholar
Kulkarni, J., et al. (2010). “Piloting the effective therapeutic dose of adjunctive selective estrogen receptor modulator treatment in postmenopausal women with schizophrenia.” Psychoneuroendocrinology 35(8): 11421147.Google Scholar
Lally, J., Higaya, E., Nisar, Z., Bainbridge, E., Hallahan, B. (2013). “Prevalence study of head shop drug usage in mental health services.” The Psychiatrist 37:4448, doi:10.1192/pb.bp.111.038315Google Scholar
Lane, H. Y., et al. (1999). “Effects of gender and age on plasma levels of clozapine and its metabolites: analyzed by critical statistics.” J Clin Psychiatry 60(1): 3640.Google Scholar
Lear, S. A., et al. (2007). “Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT).” Am J Clin Nutr 86(2): 353359.Google Scholar
Lear, S. A., et al. (2009). “Ethnic variation in fat and lean body mass and the association with insulin resistance.” J Clin Endocrinol Metab 94(12): 46964702.Google Scholar
Leung, A. and Chue, P. (2000). “Sex differences in schizophrenia, a review of the literature.” Acta Psychiatr Scand Suppl 401: 338.Google Scholar
Lorena, S. L., et al. (2004). “Gastric emptying and intragastric distribution of a solid meal in functional dyspepsia: influence of gender and anxiety.” J Clin Gastroenterol 38(3): 230236.Google Scholar
Macdonald, S., et al. (2003). “Nithsdale Schizophrenia Surveys 24: sexual dysfunction. Case-control study.” Br J Psychiatry 182: 5056.Google Scholar
Martin-Reyes, M., et al. (2011). “Depressive symptoms evaluated by the Calgary Depression Scale for Schizophrenia (CDSS): genetic vulnerability and sex effects.” Psychiatry Res 189(1): 5561.Google Scholar
Merkatz, R.,B., and Junod, S.W., (1994). “Historical background of changes in FDA policy on the study and evaluation of drugs in women.” Acad Med 69: 703707.Google Scholar
McEvoy, J. P., et al. (2005). “Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III.” Schizophr Res 80(1): 1932.Google Scholar
Meibohm, B., et al. (2002). “How important are gender differences in pharmacokinetics?Clin Pharmacokinet 41(5), 329342.Google Scholar
Meyer, J. M., et al. (2005). “The Clinical Antipsychotic Trials Of Intervention Effectiveness (CATIE) Schizophrenia Trial: clinical comparison of subgroups with and without the metabolic syndrome.” Schizophr Res 80(1): 918.Google Scholar
Mezey, G., et al. (2005). “Safety of women in mixed-sex and single-sex medium secure units: staff and patient perceptions.” Br J Psychiatry 187, 579582.Google Scholar
Micallef, J., et al. (2006). “Use of antidepressant drugs in schizophrenic patients with depression.” Encephale 32(2 Pt 1): 263269.Google Scholar
Mortimer, A. M., et al. (2010). “Clozapine for treatment-resistant schizophrenia: National Institute of Clinical Excellence (NICE) guidance in the real world.” Clin Schizophr Relat Psychoses 4(1): 4955.Google Scholar
Nejtek, V. A., et al. (2012). “Race- and gender-related differences in clinical characteristics and quality of life among outpatients with psychotic disorders.” J Psychiatr Pract 18(5): 329337.Google Scholar
Ozerdem, A., et al. (2014). “Female vulnerability for thyroid function abnormality in bipolar disorder: role of lithium treatment.” Bipolar Disord 16(1): 7282.Google Scholar
Perkins, R. & Rowland, L. (1991). “Sex differences in service usage in long-term psychiatric care are women adequately served?Br J Psychiatry Suppl (10): 7579.Google Scholar
Rosenbaum, B., et al. (2012). “Supportive psychodynamic psychotherapy versus treatment as usual for first-episode psychosis: two-year outcome.” Psychiatry 75(4): 331341.Google Scholar
Salokangas, R. K. (2004). “Gender and the use of neuroleptics in schizophrenia.” Schizophr Res 66(1): 4149.Google Scholar
Scandlyn, M. J., et al. (2008). “Sex-specific differences in CYP450 isoforms in humans.” Expert Opin Drug Metab Toxicol 4(4): 413424.Google Scholar
Scott, J. E., & Dixon, L. B. (1995). “Psychological interventions for schizophrenia.” Schizophr Bull 21(4), 621630.Google Scholar
Seeman, M. V. (1996). “The role of estrogen in schizophrenia.” J Psychiatry Neurosci 21(2), 123127.Google Scholar
Seeman, M. V. (2012). “Menstrual exacerbation of schizophrenia symptoms.” Acta Psychiatr Scand 125(5): 363371.Google Scholar
Seeman, M. V. and Ross, R. (2011). “Prescribing contraceptives for women with schizophrenia.” J Psychiatr Pract 17(4): 258269.Google Scholar
Sensky, T., et al. (2000). “A randomized controlled trial of cognitive-behavioral therapy for persistent symptoms in schizophrenia resistant to medication.” Arch Gen Psychiatry 57(2): 165172.Google Scholar
Simoni-Wastila, L., et al. (2004). “A retrospective data analysis of the impact of the New York triplicate prescription program on benzodiazepine use in medicaid patients with chronic psychiatric and neurologic disorders.” Clin Ther 26(2): 322336.Google Scholar
Simoni-Wastila, L. and Strickler, G. (2004). “Risk factors associated with problem use of prescription drugs.” Am J Public Health 94(2): 266268.Google Scholar
Smith, S. (2010). “Gender differences in antipsychotic prescribing.” Int Rev Psychiatry 22(5): 472484.Google Scholar
Smith, S. M., et al. (2002). “Sexual dysfunction in patients taking conventional antipsychotic medication.” Br J Psychiatry 181: 4955.Google Scholar
Tang, C. S., et al. (2007a). “Gender differences in characteristics of Chinese treatment-seeking problem gamblers.” J Gambl Stud 23(2): 145156.Google Scholar
Tang, Y. L., et al. (2007b). “Gender, age, smoking behaviour and plasma clozapine concentrations in 193 Chinese inpatients with schizophrenia.” Br J Clin Pharmacol 64(1): 4956.Google Scholar
Teo, C., et al. (2013). “The role of ethnicity in treatment refractory schizophrenia.” Compr Psychiatry 54(2): 167172.Google Scholar
Usall, J., et al. (2007). “Gender differences in response to antipsychotic treatment in outpatients with schizophrenia.” Psychiatry Res 153(3): 225231.Google Scholar
van Hulten, R., et al. (2003). “Comparing patterns of long-term benzodiazepine use between a Dutch and a Swedish community.” Pharmacoepidemiol Drug Saf 12(1): 4953.Google Scholar
van Os, J., et al. (1999). “Tardive dyskinesia in psychosis: are women really more at risk? UK700 Group.” Acta Psychiatr Scand 99(4): 288293.Google Scholar
Wassink, T. H., et al. (1999). “Prevalence of depressive symptoms early in the course of schizophrenia.” Am J Psychiatry 156(2): 315316.Google Scholar
Weich, S., et al. (2014). “Effect of anxiolytic and hypnotic drug prescriptions on mortality hazards: retrospective cohort study.” BMJ, 348, g1996.Google Scholar
Wieck, A. and Haddad, P. M. (2003). “Antipsychotic-induced hyperprolactinaemia in women: pathophysiology, severity and consequences. Selective literature review.” Br J Psychiatry 182: 199204.Google Scholar
Wild, R. A., et al. (2010). “Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society.” J Clin Endocrinol Metab 95(5): 20382049.Google Scholar
Wolbold, R., et al. (2003). “Sex is a major determinant of CYP3A4 expression in human liver.” Hepatology 38(4), 978988.Google Scholar
Wu, R. R., et al. (2012). “Metformin for treatment of antipsychotic-induced amenorrhea and weight gain in women with first-episode schizophrenia: a double-blind, randomized, placebo-controlled study.” Am J Psychiatry 169(8): 813821.Google Scholar
Wykes, T., et al. (2007). “Cognitive remediation therapy in schizophrenia: randomised controlled trial.” Br J Psychiatry 190, 421427.Google Scholar
Wykes, T., et al. (2003). “Are the effects of cognitive remediation therapy (CRT) durable? Results from an exploratory trial in schizophrenia.” Schizophr Res 61(2–3), 163174.Google Scholar
Wykes, T., et al. (2011). “A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes.” Am J Psychiatry 168(5): 472485.Google Scholar
Xia, J., Merinder, L. B., & Belgamwar, M. R. (2011). “Psychoeducation for schizophrenia.” Cochrane Database Syst Rev(6): CD002831.Google Scholar
Xiang, Y. T., et al. (2012). “Adjunctive mood stabilizer and benzodiazepine use in older Asian patients with schizophrenia, 2001–2009.” Pharmacopsychiatry 45(6): 217222.Google Scholar
Zarate, C. A. Jr., et al. (2007). “Efficacy of a protein kinase C inhibitor (tamoxifen) in the treatment of acute mania: a pilot study.” Bipolar Disord 9(6): 561570.Google Scholar
Zhang, X. Y., et al. (2009). “Gender differences in the prevalence, risk and clinical correlates of tardive dyskinesia in Chinese schizophrenia.” Psychopharmacology (Berl) 205(4): 647654.Google Scholar

References

Abel, K. M., Drake, R., & Goldstein, J. M. (2010). Sex differences in schizophrenia. International Review Psychiatry, 22 (5), 417428.Google Scholar
Aguera-Ortiz, L., & Reneses-Prieto, B. (1999). The place of non-biological treatments. In Howard, R., Rabins, P., & Castle, D. (eds.), Late Onset Schizophrenia (pp. 233260). Guildford, UK: Wrightson Biomedical Publishing Ltd.Google Scholar
Alici-Evcimen, Y., Ertan, T., & Eker, E. (2003). Case series with late-onset psychosis hospitalized in a geriatric psychiatry unit in Turkey: experience in 9 years. International Psychogeriatrics, 15 (1), 6972.Google Scholar
Almeida, O. (1999). The neuropsychology of schizophrenia in late life. In Howard, R., Rabins, P., & Castle, D. (eds.), Late Onset Schzophrenia (pp. 181190). Guildford, UK: Wrightson Biomedical Publishing Ltd.Google Scholar
Almeida, O., Howard, R., Forstl, H., Derrick, M., & Levy, R. (1992). Late paraphrenia: a review. International Journal of Geriatric Psychiatry, 7, 543548.Google Scholar
Australian Institute of Health and Welfare. (2013). Australia’s Welfare 2013. Canberra: Australian Institute of Health and Welfare.Google Scholar
Barak, Y., Aizenberg, D., Mirecki, I., Mazeh, D., & Achiron, A. (2002). Very-late-onset schizophrenia-like psychosis: clinical and imaging characteristics in comparison with elderly patients with schizophrenia. Journal of Nervous and Mental Diseases, 190, 733736.Google Scholar
Bogren, M., Mattisson, C., Isberg, P. E., Munk-Jorgensen, P., & Nettelbladt, P. (2010). Incidence of psychotic disorders in the 50 year follow-up of the Lundby population. Australian and New Zealand Journal of Psychiatry, 44, 3139.Google Scholar
Borglum, A. D., Hampson, M., Kjeldsen, T. E., Muir, W., Murray, V., Ewald, H., et al. (2001). Dopa decarboxylase genotypes may influence age at onset of schizophrenia. Molecular Psychiatry, 6, 712717.Google Scholar
Boylan, L. (2000). Limbic encephalitis and late-onset psychosis. The American Journal of Psychiatry, 157, 13431344.Google Scholar
Bozikas, V. P., Kovari, E., Bouras, C., & Karavatos, A. (2002). Neurofibrillary tangles in elderly pateints with late onset schizophrenia. Neuroscience Letters, 324, 109112.Google Scholar
Brodaty, H., Sachdev, P., Koschera, A., Monk, D., & Cullen, B. (2003). Long-term outcome of late-onset schizophrenia: 5 year follow-up study. British Journal of Psychiatry, 183, 213219.Google Scholar
Brodaty, H., Sachdev, P., Rose, N., Rylands, K., & Prenter, L. (1999). Schizophrenia with onset after age 50 years. I: Phenomenology and risk factors. British Journal of Psychiatry, 175, 410415.Google Scholar
Brunelle, S., Cole, M. G., & Elie, M. (2012). Risk factors for the late-onset psychoses: a systematic review of cohort studies. International Journal of Geriatric Psychiatry, 27, 240252.Google Scholar
Brunelle, S., Vahia, I., & Jeste, D. (2013). Late-onset schizophrenia. In Dening, T. & Thomas, A. (eds.), Oxford Textbook of Old Age Psychiatry (pp. 603–20). New York, NY: Oxford University Press.Google Scholar
Casanova, M. F., Stevens, J. R., Brown, R., Royston, C., & Bruton, C. (2002). Disentangling the pathology of schizophrenia and paraphrenia. Acta Neuropathologica, 103, 313320.Google Scholar
Castle, D. (2005). Epidemiology of late onset schizophrenia. In Hassett, A., Ames, D., & Chiu, E., Psychosis in the elderly. (pp. 1827). Andover, UK: Taylor and Francis Group.Google Scholar
Castle, D. (1999). Gender and age at onset in schizophrenia. In Howard, R., Rabins, P., & Castle, D. (eds.), Late Onset Schizophrenia (pp. 147–64). Guildford, UK: Wrightson Biomedical Publishing Ltd.Google Scholar
Castle, D. J., & Murray, R. M. (1993). The epidemiology of late-onset schizophrenia. Shizophrenia Bulletin, 19, 288294.Google Scholar
Castle, D. J., Wessely, S., Howard, R., & Murray, R. M. (1997). Schizophrenia with onset at the extremes of adult life. International Journal of Geriatric Psychiatry, 12, 712717.Google Scholar
Chapman, M. R., & Vause, H. E. (2011). Anti-NMDA receptor encephalitis: diagnosis, psychiatric presentation and treatment. American Journal of Psychiatry, 168, 245251.Google Scholar
Christenson, R., & Blazer, D. (1984). Epidemiology of persecutory ideation in an elderly population in the community. American Journal of Psychiatry, 141, 10881091.Google Scholar
Cooper, A., & Curry, A. (1976). The pathology of deafness in the paranoid and affective psychoses of later life. Journal of Psychosomatic Research, 20, 97105.Google Scholar
Copeland, J., Davidson, I., Dewey, M., Gilmore, C., Larkin, B., & McWilliam, C. (1992). Alzheimer’s disease, other dementias, depression and pseudo-dementia: prevalence, incidence and three-year outcomes. British Journal of Psychiatry, 161, 230239.Google Scholar
Copeland, J., Dewey, M., Scott, A., Gilmore, C., Larkin, B., & Cleave, N. (1998). Schizophrenia and delusional disorder in older age: community prevalence, incidence comorbidity and outcome. Schizophrenia Bulletin, 24, 153161.Google Scholar
Corey-Bloom, J., Jernigan, T., Archibald, S., Harris, M., & Jeste, D. (1995). Quantitative magnetic resonance imaging of the brain in late-life schizophrenia. American Journal of Psychiatry, 152, 447449.Google Scholar
Davey, D. A. (2014). Alzheimer’s disease and vascular dementia: one potentially preventable and modifiable disease. Part I: Pathology, diagnosis and screening. Neurodegenerative Disease Management, 4, 253259.Google Scholar
Di Iulio, F., Palmer, K., Blundo, C., Casini, A., Gianni, W., Caltagirone, C., et al. (2010). Occurrence of neuropsychiatric symptoms and psychiatric disorders in mild Alzheimer’s disease and mild cognitive impariment subtypes. International Psychogeriatrics, 22, 629640.Google Scholar
Dupont, R. M., Lehr, P. P., Lamoureaux, G., Halpern, S., Harris, M. J., & Jeste, D. V. (1994). Preliminary report: cerebral blood flow abnormalities in older schizophrenic patients. Psychiatry Research, 55, 121130.Google Scholar
Erikson, E., & Erikson, J. (1998). Major stages in psychosocial development. In Erikson, E., & Erikson, J., The Life Cycle Completed (pp. 5566). New York, NY: W.W. Norton and Company.Google Scholar
Essali, A., & Ali, G. (2012). Antipsychotic drug treatment for elderly people with late-onset schizophrenia. Cochrane Database of Systematic Reviews, 2.Google Scholar
Fabbrini, G., Barbanti, P., & Aurilia, C. (2001). Tardive dyskinesias in teh elderly. International Journal of Geriatric Psychiatry, 16 (S1), S19S23.Google Scholar
Forsell, Y. (2000). Predictors for depression, anxiety and psychotic symptoms in a very elderly population: data from a 3 year follow-up study. Social Psychiatry and Psychiatric Epidemiology, 35, 259263.Google Scholar
Forsell, Y., & Henderson, A. S. (1998). Epidemiology of paranoid symptoms in an elderly population. British Journal of Psychiatry, 172, 429432.Google Scholar
Forstl, H. (1994). The short history of focal brain degeneration. The Canadian Journal of Neurological Sciences, 21, 78.Google Scholar
Forstl, H., Burns, A., Levy, R., & Cairns, N. (1994). Neuropathological correlates of psychotic phenomena in confirmed Alzheimer’s disease. British Journal of Psychiatry, 165 (1), 5359.Google Scholar
Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect againsta dementia. Lancet Neurology, 3, 343353.Google Scholar
Fuchs, T. (1999a). Life events in late paraphrenia and depression. Psychopathology, 32, 6069.Google Scholar
Fuchs, T. (1999b). Patterns of relation and premorbid personality in late paraphrenia and depression. Psychopathology, 32, 7080.Google Scholar
Galdas, P., Cheater, F., & Marshall, P. (2005). Men and health help-seeking behaviour: literature review. Journal of Advanced Nursing, 49, 616623.Google Scholar
Ganerod, J., Ambrose, H., & Davies, N. (2010). Causes o fencephalitis and differences in their presentation in England: a multicentre, population based prospective study. Lancet Infectious Diseases, 10, 835844.Google Scholar
Geda, Y., Schneider, L., Gitlin, L., Miller, D., Smith, G., Bell, J., et al. (2013). Neuropsychiatric symptoms in Alzheimer’s disease: past progress and anticipation of the future. Alzheimer’s Dementia, 9, 602608.Google Scholar
Giblin, S., Clare, L., Livingston, G., & Howard, R. (2004). Psychosocial correlates of late-onset psychosis: life experiences, cognitive schemas and attitudes to ageing. International Journal of Geriatric Psychiatry, 19, 611623.Google Scholar
Girard, C., & Simard, M. (2008). Clinical characterisation of late- and very late-onset first psychotic episode in psychiatric inpatients. American Journal of Geriatric Psychiatry, 16, 478487.Google Scholar
Girard, C., Sirnard, M., Noiseux, R., Laplante, L., Dugas, M., Rousseau, F., et al. (2011). Late-onset-psychosis: cognition. International Psychogeriatrics, 23, 13011316.Google Scholar
Granholm, E., McQuaid, J., McClure, F., Link, P., Perivoliotis, D., Gottlieb, J., et al. (2007). Randomized controlled trial of cognitive behavioural social skills training for older people with schizophrenia: 12-month follow-up. The Journal of Clinical Psychiatry, 68, 730737.Google Scholar
Hafner, H., Maurer, K., Loffler, W., van der Heiden, W., Munk-Jorgensen, P., Hambrecht, M., et al. (1998). The ABC schizophrenia study: a preliminary overview of the results. Social Psychiatry and Psychiatric Epidemiology, 33, 380386.Google Scholar
Hafner, H., van der Heiden, W., Behrens, S., Gattaz, W., Hambrecht, M., Loffler, W., et al. (1998). Causes and consequences of the gender difference in age at onset of schizophrenia. Schizophrenia Bulletin, 24, 99113.Google Scholar
Hamshere, M. L., Holmans, P. A., McCarthy, G. M., Jones, L. A., Murphy, K. C., Sanders, R. D., et al. (2011). Phenotype evaluation and genomewide linkage study of clinical variables in schizophrenia. American Journal of Medical Genetics Part B. Neuropsychiatric Genetics, 156B, 929940.Google Scholar
Harris, M. J., & Jeste, D. V. (1988). Late-onset schizophrenia: an overview. Schizophrenia Bulletin, 14 (1), 3955.Google Scholar
Hasset, A. (2005). Defining psychotic disorders in an aging population. In Hassett, A., Ames, D., & Chiu, E. (eds.), Psychosis in the elderly (pp. 817). Andover, UK: Taylor and Francis.Google Scholar
Hassett, A. (2002). Schizophrenia and delusional disorders with onset in later life. Revista Brasileira de Psiquiatria, 24 (S1), 8188.Google Scholar
Hassett, A. (1999). A descriptive study of first presentation psychosis in old age. Australian and New Zealand Journal of Psychiatry, 33, 814824.Google Scholar
Hassett, A. (1997). The case for a psychological perspective on late-onset psychosis. Australian and New Zealand Journal of Psychiatry, 31, 6875.Google Scholar
Henderson, A. S., & Kay, D. W. (1997). The epidemiology of functional psychosises of late onset. European Archieves of Psychiatry and Clinical Neuroscience, 247, 176189.Google Scholar
Henderson, A. S., Korten, A. E., Levings, C., Jorm, A. F., Christensen, H., Jacomb, P. A., et al. (1998). Psychotic symptoms in the elderly: a prospective study in a population sample. International Journal of Geriatric Psychiatry, 13, 484492.Google Scholar
Herbert, M. E., & Jacobson, S. (1967). Late Paraphrenia. British Journal of Psychiatry, 113, 461469.Google Scholar
Holden, N. (1987). Late paraphrenia or the paraphrenias? A descriptive study with a 10 year follow-up. British Journal of Psychiatry, 150, 635639.Google Scholar
Howard, R. (2001). Late-onset schizophrenia and very late-onset schizophrenia-like psychosis. Reviews in Clinical Gerontology, 11, 337352.Google Scholar
Howard, R. (1999). Schizophrenia-like psychosis with onset in late life. In Howard, R., Rabins, P., & Castle, D. (eds.), Late Onset Schizophrenia (pp. 127138). Guildford, UK: Wrightson Biomedical Publishing Ltd.Google Scholar
Howard, R. (1992). Permeable walls, floors, ceilings and doors. Partition delusions in late paraphrenia. . International Journal of Geriatric Psychiatry, 7, 719724.Google Scholar
Howard, R., Almeida, O., & Levy, R. (1994). Phenomenology, demography and diagnosis in late paraphrenia. Psychological Medicine, 24, 397410.Google Scholar
Howard, R. J., Graham, C., Sham, P., Dennehey, J., Castle, D. J., Levy, R., et al. (1997). A controlled family study of late-onset non-affective psychosis (late paraphrenia). British Journal of Psychiatry, 170, 511514.Google Scholar
Howard, R., & Levy, R. (1992). Which factors affect treatment response in late paraphrenia? International Journal of Geriatric Psychiatry, 7, 667672.Google Scholar
Howard, R., Mellers, J., Petty, R., Bonner, D., Menon, R., Almeida, O., et al. (1995). Magnetic resonance imaging volumetric measurements of the superior temporal gyrus, hippocampus, parahippocampal gyrus, frontal and temporal lobes in late paraphrenia. Psychological Medicine, 25, 495503.Google Scholar
Howard, R., Rabins, P. V., Seeman, M. V., & Jeste, D. (2001). Letter to the editor; Dr Howard and colleagues reply. American Journal of Psychiatry, 158, 13351336.Google Scholar
Howard, R., Rabins, P. V., Seeman, M. V., & Jeste, D. V. (2000). Late-onset schizophrenia and very-late-onset schizophrenia-like psychosis: an international consensus. The International Late-Onset Schizophrenia Group. American Journal of Psychiatry, 157, 172178.Google Scholar
Huang, C., & Zhang, Y. (2009). Clinical diffrences between late-onset and early-onset chronically hospitalized elderly schizophrenic patients in Taiwan. International Journal of Geriatric Psychiatry, 24, 11661172.Google Scholar
Hymas, N., Naguib, M., & Levy, R. (1989). Late paraphrenia – a follow-up study. International Journal of Geriatric Psychiatry, 4, 2329.Google Scholar
Jeste, D. V., Alexopoulos, G. S., Bartels, S. J., Cummings, J. L., Gallo, J. J., Gottlieb, G. L., et al. (1999a). Consensus statement on the upcoming crisis in geriatric mental health: research agenda for the next two decades. Archives of General Psychiatry, 56, 848853.Google Scholar
Jeste, D. V., Caligiuri, M. P., Paulsen, J. S., Heaton, R. K., Lacro, J. P., Harris, M. J., et al. (1995). Risk of tardive dyskinesia in older patients. A prospective ongitudinal study of 266 outpatients. Archives of General Psychiatry, 52, 756765.Google Scholar
Jeste, D. V., Harris, M. J., Krull, A., Kuck, J., McAdams, L. A., & Heaton, R. (1995). Clinical and neuropsychological characteristics of patients with late-onset schizophrenia. American Journal of Psychiatry, 152, 722–30.Google Scholar
Jeste, D. V., Lacro, J. P., Bailey, A., et al. (1999b). Lower incidence of tardive dyskinesia with risperidone compared with haloperidol in older patients. Journal of the American Geriatrics Society, 47, 716719.Google Scholar
Jeste, D. V., Lacro, J. P., Palmer, B., Rockwell, E., Harris, M. J., & Caligiuri, M. P. (1999c). Incidence of tardive dyskinesia in early stages of low-dose treatment with typical neuroleptics in older patients. American Journal of Psychiatry, 156, 309311.Google Scholar
Jin, H., Shih, P. A., Golshah, S., Mudaliar, S., Henry, R., Glorioso, D. K., et al. (2013). Comparison of longer-term safety and effectiveness of four atypical antipsychotics in patients over age 40: a trial using equipoise-stratified randomization. The Journal of Clinical Psychiatry, 74, 1018.Google Scholar
Jones, D. K., Catani, M., Pierpaoli, C., Reeves, S., Shergill, S., et al. (2005). A diffusion tensor magnetic resonance imaging study of frontal cortex connections in very-late-onset schizophrenia-like psychosis. American Journal of Geriatric Psychiatry, 13, 10921099.Google Scholar
Kay, D. W., & Roth, M. (1961). Environmental and hereditary factors in the schizophrenias of age ("late paraphrenia") and their bearing on the general problem of causation in schizophrenia. . The Journal of Mental Science, 107, 649686.Google Scholar
Keith, S., Regier, D., & Rae, D. (1991). Schizophrenic disorders. In Robins, L., & Regier, D. (eds.), Psychiatric Disorders in America (pp. 3352). New York, NY: The Free Press.Google Scholar
Kelly, D. L., McMahon, R. P., Liu, F., Love, R., Wehring, H. J., Shim, J. C., et al. (2010). Cardiovascular disease mortality in patients with chronic schizophrenia treated with clozapine: a retrospective cohort study. The Journal of Clinical Psychiatry, 71, 304311.Google Scholar
Kindynis, S., Burlacu, S., Louville, P., & Limosin, F. (2013). Effect of schema-focused therapy on depression, anxiety and maladaptive cognitive schemas in the elderly. L’Encephale, 39, 393400.Google Scholar
Kohler, S., van der Werf, M., Hart, B., Morrison, G., McCreadie, R., Kirkpatrick, B., et al. (2009). Evidence that better outcome of psychosis in women is reversed with increasing age of onset: a population based 5 year follow-up study. Schizophrenia Research, 113, 226232.Google Scholar
Kohler, S., van OS, J., de Graaf, R., Vollebergh, W., Verhey, F., & Krabbendam, L. (2007). Psychosis risk as a function of age at onset: a comparison between early- and late-onset psychosis in a general population sample. Social Psychiatry and Psychiatric Epidemiology, 42, 288294.Google Scholar
Korner, A., Lopez, A. G., Lauritzen, L., Andersen, P. K., & Kessing, L. V. (2009a). Acute and transient psychosis in old age and the subsequent risk of dementia: a nationwide register-based study. International Journal of Geriatric Psychiatry, 24, 6268.Google Scholar
Korner, A., Lopez, A., Lauritzen, L., Andersen, P., Kessing, L. (2009b). Late and very-late first-contact schizophrenia and the risk of dementia-a nationwide register based study. International Journal of Geriatric Psychiatry, 24, 6167.Google Scholar
Kua, E. A. (1992). Community study of mental disorders in elderly Singaporean Chinese using the GMS-AGECAT package. Australian and New Zealand Journal of Psychiatry, 26, 502506.Google Scholar
Kulkarni, J. (1997). Women and schizophrenia: a review. Australian and New Zealand Journal of Psychiatry, 31(1): 4656.Google Scholar
Lagodka, A., & Robert, P. (2009). Is late-onset schizophrenia related to neurodegenerative processes? A review of literature. . L’Encephale, 35, 386393.Google Scholar
Levy, R., Naguib, M., & Hymas, N. (1987). Late paraphrenia. British Journal of Psychiatry, 151, 702.Google Scholar
Mason, O., Stott, J., & Sweeting, R. (2013). Dimensions of positive symptoms in late versus early onset psychosis. International Psychogeriatrics, 25, 397410.Google Scholar
Mazeh, D., Zemishlani, C., Aizenberg, D., & Barak, Y. (2005). Patients with very-late-onset schizophrenia-like psychosis: a follow-up study. American Journal of Geriatric Psychiatry, 13, 417419.Google Scholar
McCulloch, Y., Clare, L., Howard, R., & Peters, E. (2006). Psychological processes underlying delusional thinking in late-onset psychosis: a preliminary investigation. International Journal of Geriatric Psychiatry, 21, 768777.Google Scholar
Meesters, P. D., de Haan, L., Comijs, H. C., Stek, M. L., Smeets-Janssen, M. M., & Weeda, M. R. (2012). Schizophrenia spectrum disorders in later life: prevalence and distribution of age at onset and sex in a dutch catchment area. American Journal of Geriatric Psychiatry, 20, 1828.Google Scholar
Michelet, M., Lund, A., & Sveen, U. (2014). Strategies to recruit and retain older adults in intervention studies: a quantitative comparative study. Archives of Gerontology & Geriatrics, 59, 2531.Google Scholar
Miller, B. L., & Lesser, I. M. (1988). Late-life psychosis and modern neuroimaging. Psychiatric Clinics of North America, 11, 337352.Google Scholar
Miller, B. L., Lesser, I. M., Mena, I., & et al. (1992). Regional cerebral blood flow in late-life-onset psychosis. Neuropsychiatry, Neuropsychology and Behavioural Neurology, 5, 132137.Google Scholar
Minnett, T., Blossom, S., & Brayne, C. (2013). Epidemiology of old age psychiatry: an overview of concepts and main studies. In Dening, T., & Thomas, A., Oxford Textbook of Old Age Psychiatry. New York, NY: Oxford University Press.Google Scholar
Mintzer, J., & Targum, S. (2003). Psychosis in elderly patients: classification and pharmacotherapy. Journal of Geriatric Psychiatry and Neurology, 16 (4), 199206.Google Scholar
Mitford, E., Reay, R., McCabe, K., Paxton, R., & Turkington, D. (2010). Ageism in first episode psychosis. International Journal of Geriatric Psychiatry, 25, 11121118.Google Scholar
Mitter, P., Krishnan, S., Bell, P., Stewart, R., & Howard, R. (2004). The effect of ethnicity and gender on first-contact rates for schizophrenia-like psychosis in Bangladeshi, Black and White elders in Tower Hamlets, London. International Journal of Geriatric Psychiatry, 19, 286290.Google Scholar
Mitter, P., Reeves, S., Romero-Rubiales, F., Bell, P., Stewart, R., & Howard, R. (2005). Migrant status, age, gender and social isolation in very-late-onset schizophrenia-like psychosis. International Journal of Geriatric Psychiatry, 20, 10461051.Google Scholar
Moore, R., Blackwood, N., Corcoran, R., Rowse, G., Kinderman, P., Bentall, R., et al. (2006). Misunderstanding the intentions of others: an exploratory study of the cognitive etiology of persecutory delusions in very late-onset schizophrenia-like psychosis. American Journal of Geriatric Psychiatry, 14, 410418.Google Scholar
Nguyen, C. T., Couture, M. C., Alvarado, B. E., & Zununegui, M. V. (2008). Life course socioeconomic disadvantage and cognitive function among the elderly population of seven capitals in Latin America and the Caribbean. Journal of Aging and Health, 20 (3), 347362.Google Scholar
O’Rand, A. M. (1996). The precious and the precocious: understanding cumulative disadvantage and cumulative advantage over the life course. Gerontologist, 36, 230238.Google Scholar
Ostling, S., & Skoog, I. (2002). Psychotic symptoms and paranoid ideation in a non-demented population based sample of the very old. Archives of General Psychiatry, 59 (1), 5359.Google Scholar
Palmer, B. W., Bondi, M. W., Twamley, E. W., Thal, L., Golshan, S., & Jeste, D. V. (2003). Are late-onset schizophrenia spectrum disorders neurodegenerative conditions? Annual rates of change on two dementia measures. Journal of Neuropsychiatry and Clinical Neurosciences, 15, 4552.Google Scholar
Pearlson, G. (1999). Brain imaging in late onset schizophrenia. In Howard, R., Rabins, P., & Castle, D. (eds.), Late Onset Schizophrenia (pp. 191204). Guildford, UK: Wrightson Biomedical Publishing Ltd.Google Scholar
Prager, S., & Jeste, D. V. (1993). Sensory impairment in late-life schizophrenia. Schizophrenia Bulletin, 19, 755772.Google Scholar
Quin, R. C., Clare, L., Ryan, P., & Jackson, M. (2009). ‘Not of this world’: the subjective experience of late-onset psychosis. Aging and Mental Health, 13, 779787.Google Scholar
Rabins, P., Aylward, e., Holroyd, S., & Pearlson, G. (2000). MRI findings differentiate between late-onset schizophrenia and late-life mood disorder. International Journal of Geriatric Psychiatry, 15, 954960.Google Scholar
Rabins, P., & Lavrisha, M. (2003). Long-term follow-up and phenomenologic differences distinguish among late-onset schizophrenia, late-life depression and progressive dementia. American Journal of Geriatric Psychiatry, 11, 589594.Google Scholar
Rajji, T., Ismail, Z., & Mulsant, B. (2009). Age at onset and cognition in schizophrenia: meta-analysis. British Journal of Psychiatry, 195, 286293.Google Scholar
Rasmussen, H. B., Timm, S., Wang, A. G., Soeby, K., Lublin, H., Fenger, M., et al. (2006). Association between the CCR5 32-bp deletion allele and late onset of schizophrenia. American Journal of Psychiatry, 163 (3), 507511.Google Scholar
Reeves, R., & Brister, J. (2008). Psychosis in late life: emerging issues. Journal of Psychosocial Nursing and Mental Health Services, 46, 4552.Google Scholar
Reeves, S., Sauer, J., Stewart, R., Granger, A., & Howard, R. (2001). Increased first-contact rates for very-late-onset schizophrenia-like psychosis in African and Carribbean born elders. British Journal of Psychiatry, 179, 172174.Google Scholar
Reeves, S., Stewart, R., & Howard, R. (2002). Service contact and psychopathology in very-late-onset schizophrenia: the effects of gender and ethnicity. International Journal of Geriatric Psychiatry, 17, 473479.Google Scholar
Regier, D. (2000). Community diagnosis counts. Archives of General Psychiatry, 57, 223224.Google Scholar
Reulbach, U., Bleich, S., Biermann, T., Pfahlberg, A., & Sperling, W. (2007). Late-onset schizophrenia in child survivors of the Holocaust. Journal of Nervous and Mental Disease, 195, 315319.Google Scholar
Riecher-Rossler, A. (1999). Late onset schizophrenia: The German concept and literature. In Howard, R., Rabins, P., & Castle, D., Late Onset Schizophrenia (pp. 316). Guildford, UK: Wrightson Biomedical Publishing Ltd.Google Scholar
Riecher-Rossler, A., Hafner, H., Dutsch-Strobel, A., Oster, M., Stumbaum, M., van Gulick-Bailer, M., et al. (1994). Further evidence for a specific role of estradiol in schizophrenia? Biological Psychiatry, 36, 492494.Google Scholar
Riecher-Rossler, A., Hafner, H., Stumbaum, M., Maurer, K., & Schmidt, R. (1994). Can estradiol modulate schizophrenic symptomatology? Schizophrenia Bulletin, 20, 203214.Google Scholar
Rivkin, P., Kraut, M., Barta, P., Anthony, J., Arria, A. M., & Pearlson, G. (2000). White matter hyperintensity volume in late-onset and early-onset schizophrenia. International Journal of Geriatric Psychiatry, 15, 10851089.Google Scholar
Rodriguez-Ferrera, S., Vassilas, C. A., & Haque, S. (2004). Older people with schizophrenia: a community study in a rural catchment area. International Journal of Geriatric Psychiatry, 19, 11811187.Google Scholar
Rosenberg, P. B., Mielke, M. M., Appleby, B. S., Oh, E. S., Geda, Y. E., & Lyketos, C. G. (2013). The association of neuropsychiatric symptoms in MCI with incident dementia and Alzheimer’s disease. American Journal of Geriatric Psychiatry, 21, 685695.Google Scholar
Roth, M., & Kay, D. W. (1998). Late paraphrenia: a variant of schizophrenia manifest in late life or an organic clinical syndrome? A review of recent evidence. International Journal of Geriatric Psychiatry, 13, 775784.Google Scholar
Rummel-Kluge, C., Komossa, K., Schwarz, S., Hunger, H., Schmid, F., Lobos, C. A., et al. (2010). Head-to-head comparisons of metabolic side-effects of second generation antipsychotics in the treatment of schizophrenia: a systematic review and meta-analysis. Schizophrenia Research, 123, 225233.Google Scholar
Sachdev, P., & Brodaty, H. (1999). Quantitative study of signal hyperintensities on T2-weighted magnetic resonance imaging in late-onset schizophrenia. American Journal of Psychiatry, 156, 19581967.Google Scholar
Sachdev, P., Brodaty, H., Rose, N., & Cathcart, S. (1999). Schizophrenia with onset after age 50 years. II: Neurological, neuropsychological and MRI investigation. British Journal of Psychiatry, 175, 416421.Google Scholar
Sachdev, P., Brodaty, H., Rose, N., & Haindl, W. (1997). Regional cerebral blood flow in late-onset schizophrenia: a SPECT study using 99mTc-HMPAO. Schizophrenia Research, 27, 105117.Google Scholar
Schneider, J. A., Arvanitakis, Z., Bang, W., & Bennett, D. A. (2007). Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology, 69, 21972204.Google Scholar
Schneider, L. S., Dagerman, K. S., & Insel, P. (2005). Risk of death with atypical antipsychotic drug treatment for dementia: meta-analysis of randomized placebo-controlled trials. JAMA, 294, 19341943.Google Scholar
Sechi, G., & Serra, A. (2007). Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurology, 6, 442455.Google Scholar
Seeman, M. (1999). Oestrogens and psychosis. In Howard, M., Rabins, P., & Castle, D., Late Onset Schizophrenia (pp. 165180). Guildford, UK: Wrightson Biomedical Publishing Ltd.Google Scholar
Sheffield, K., & Peek, M. K. (2009). Neighborhood context and cognitive decline in older Mexican Americans: results from the Hispanic established populations for epidemiologic studies of the elderly. American Journal of Epidemiology, 169, 10921101.Google Scholar
Skoog, I. (1993). The prevalence of psychotic, depressive and anxiety syndromes in demented and non-demented 85-year-olds. International Journal of Geriatric Psychiatry, 8, 247–53.Google Scholar
Smeets-Janssen, M. J., Meesters, P. D., Comijs, H. C., Eikelenboom, P., Smit, J. H., de Haan, L., et al. (2013). Theory of mind differences in older patients with early-onset and late-onset paranoid schizophrenia. International Journal of Geriatric Psychiatry, 28, 11411146.Google Scholar
Symonds, L. L., Olichney, J. M., Jernigan, T. L., Corey-Bloom, J., Healy, J. F., & Jeste, D. V. (1997). Lack of clinically significant gross structural abnormalities in MRIs of older patients with schizophrenia and related psychoses. Journal Neuropsychiatry and Clinical Neurosciences, 9, 251258.Google Scholar
Thirthalli, J., Benegal, V., & Gangadhar, B. (2010). Substance induced psychosis. In Sachdev, P., & Keshavan, M., Secondary Schizophrenia. New York, NY: Cambridge University Press.Google Scholar
Titulaer, M., McCracken, L., Gabilondo, I., Armangue, T., Glaser, C., Iizuka, T., et al. (2013). Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurology, 12, 157165.Google Scholar
van der Heijden, F. M., Zeebregts, C. J., & Reijnen, M. M. (2010). Does extracranial arterial pathology play a role in late-onset psychiatric disorders? Cognitive Behaviour and Neurology, 23, 147151.Google Scholar
van der Werf, M., Kohler, S., Verkaaik, M., Verhey, F., van Os, J., et al. (2012). Cognitive functioning and age at onset in non-affective psychotic disorders. Acta Psychiatrica Scandinavica, 126, 274281.Google Scholar
van Os, J., Howard, R., Takei, N., & Murray, R. M. (1995). Increasing age is a risk factor for psychosis in the elderly. Social Psychiatry and Psychiatric Epidemiology, 30 (4), 161164.Google Scholar
Velakoulis, D., Walterfang, M., Mocellin, R., Pantelis, C., Dean, B., & McLean, C. (2009). Abnormal hippocampal distribution of TDP-43 in patients with late-onset psychosis. Australian and New Zealand Journal of Psychiatry, 43, 739745.Google Scholar
Verdoux, H., Geddes, J.R., Takei, N., Lawrie, S.M., Bovet, P., Eagles, J.M., et al. (1997) Obstetric complications and age at onset in schizophrenia: an international collaborative meta-analysis of individual patient data. American Journal of Psychiatry, 154, 12201227.Google Scholar
Voisey, J., Swagell, C. D., Hughes, I. P., Lawford, B. R., Young, R. M., & Morris, C. P. (2012). A novel DRD2 single-nucleotide polymorphism analysis. Genetic Testing and Molecular Biomarkers, 16, 7781.Google Scholar
Woolcott, J. C., Richardson, K. J., Wiens, M. O., Patel, B., Marin, J., Kahn, K. M., et al. (2009). Meta-analysis of the impact of nine medication classes on falls in elderly persons. Archives of Internal Medicine, 169, 19521960.Google Scholar
Yasuda, M., Kobayashi, T., Kato, S., & Kishi, K. (2013). Clinical features of late-onset schizophrenia in Japan: comparison with early-onset cases. Psychogeriatrics, 13, 244249.Google Scholar

References

Accolla, E., Caputo, E., Cogiamanian, F., et al. (2007). Gender differences in patients with Parkinson’s disease treated with subthalamic deep brain stimulation. Movement Disorders, 22, 11501156.Google Scholar
Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R., et al. (2011). Physical exercise as a preventive or disease-modifying treatment dementia and brain aging. Mayo Clinic Proceedings, 86, 876884.Google Scholar
Alexopoulos, G. S., Meyers, B. S., Young, R. C., et al., (1997). “Vascular depression” hypothesis. Archives of General Psychiatry, 54, 915922. doi:10.1001/archpsyc.1997.01830220033006.Google Scholar
Almela, M., Hidalgo, V., Villada, C., et al. (2011). Salivary alpha-amylase response to acute psychosocial stress: The impact of age. Biological Psychology, 87, 421429. doi: 10.1016/j.biopsycho.2011.05.008.Google Scholar
Alzheimer’s Association. (2011). Alzheimer’s Association report: 2011 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 7, 208244.Google Scholar
Alzheimer Disease International. (2013). The Global Impact of Dementia 2013-2050. www.alz.co.uk/research/GlobalImpactDementia2013.pdf.Google Scholar
Baker, L. D., Frank, L. L., Foster-Schubert, K., et al. (2010). Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Archives of Neurology, 67, 7179.Google Scholar
Barnes, D. E., Yaffe, K. and Byers, A. L. (2012). Midlife vs. late-life depressive symptoms and risk of dementia: Differential effects for Alzheimer disease and vascular dementia. Archives of General Psychiatry, 69, 493498. doi:10.1001/archgenpsychiatry.2011.1481.Google Scholar
Beeri, M. S., Rapp, M., Schmeidler, J., et al. (2009). Number of children is associated with neuropathology of Alzheimer’s disease in women. Neurobiology of Aging, 30(8), 11841191.Google Scholar
Bernardi, L., Frangipane, F., Smirne, N., et al. (2012). Epidemiology and genetics of frontotemporal dementia: a door-to-door survey in southern Italy. Neurobiology of Aging, 33, 2948.e12948.e10. doi: 10.1016/j.neurobiolaging.2012.06.017. Epub Jul 20, 2012.Google Scholar
Bishara, D. and Harwood, D. (2014). Safe prescribing of physical health medication in patients with dementia. International Journal of Geriatric Psychiatry, Aug 4. doi: 10.1002/gps.4163. [Epub ahead of print].Google Scholar
Bjørnarå, K. A., Dietrichs, E. and Toft, M. (2013). REM sleep behavior disorder in Parkinson’s disease–is there a gender difference? Parkinsonism and Related Disorders, 19, 120122. doi: 10.1016/j.parkreldis.2012.05.027.Google Scholar
Brown, S. L., Smith, D. M., Schulz, R., et al. (2009). Caregiving behavior is associated with decreased mortality risk. Psychological Science, 20, 488494. doi: 10.1111/j.1467-9280.2009.02323.x. Epub Mar 20, 2009.Google Scholar
Butters, M. A., Whyte, E. M., Nebes, R. D., et al. (2004). The nature and determinants of neuropsychological functioning in late-life depression. Archives of General Psychiatry, 61, 587595. doi:10.1001/archpsyc.61.6.587.Google Scholar
Capistrant, D. B., Moon, J. R., Berkman, L. F., et al. (2011). Current and long-term spousal caregiving and onset of cardiovascular disease. Journal of Epidemiology and Community Health, 66, 951956. doi:10.1136/jech-2011-200040.Google Scholar
Chapman, B. P., Duberstein, P. R., Sörensen, S., et al. (2007). Gender differences in five factor model personality traits in an elderly cohort: Extension of robust and surprising findings to an older generation. Personality and Individual Differences, 43, 15941603.Google Scholar
Colucci, M., Cammarata, S., Assini, A., et al. (2006). The number of pregnancies is a risk factor for Alzheimer’s disease. European Journal of Neurology, 13, 13741347.Google Scholar
Corbo, R. M., Gambina, G., Ulizzi, L., et al. (2007). Combined effect of apolipoprotein e genotype and past fertility on age at onset of Alzheimer’s disease in women. Dementia and Geriatric Cognitive Disorders, 24, 8285.Google Scholar
Costa, P., Terracciano, A. and McCrae, R. R. (2001). Gender differences in personality traits across cultures: Robust and surprising findings. Journal of Personality and Social Psychology, 81(2), 322331.Google Scholar
Cupidi, C., Realmuto, S., Lo Coco, G., et al. (2012). Sleep quality in caregivers of patients with Alzheimer’s disease and Parkinson’s disease and its relationship to quality of life. International Psychogeriatrics, 24, 18271835.Google Scholar
Espeland, M.A., Tindle, H.A., Bushnell, C.A., et al. (2009). Brain volumes, cognitive impairment, and conjugated equine estrogens. Journal of Gerontology: Biological Sciences, 64, 12431250.Google Scholar
Ferri, C.P., Prince, M., Brayne, C., et al. (2005). Global prevalence of dementia: a Delphi consensus study. The Lancet, 366, 2112–112L.Google Scholar
Fredman, L., Cauley, J. A., Hochberg, M., et al. (2010). Mortality associated with caregiving, general stress, and caregiving-related stress in elderly women: results of caregiver-study of osteoporotic fractures. Journal of the American Geriatrics Society, 58, 937943. doi: 10.1111/j.1532-5415.2010.02808.x. Epub Mar 30, 2010.Google Scholar
Gao, S., Hendrie, H. C., Hall, K. S., et al. (1998). The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Archives of General Psychiatry, 55, 809815.Google Scholar
Gilberti, N., Turla, M., Alberici, A., et al. (2012). Prevalence of frontotemporal lobar degeneration in an isolated population: the Vallecamonica study. Neurological Sciences, 33, 899904. doi: 10.1007/s10072-011-0865-0.Google Scholar
Glisky, E. L. (2007). Changes in cognitive function in human aging. In Brain Aging: Models, Methods and Mechanisms. Edited by Riddle, D. R. Boca Raton, FL: CRC Press.Google Scholar
Grady, D., Herrington, D., Bittner, V., et al. (2002). Cardiovascular disease outcomes during 6.8 years of hormone therapy. JAMA, 288, 4957.Google Scholar
Haaxma, C.A., Bloem, B.R., Borm, G.F., et al. (2007). Gender differences in Parkinson’s disease. Journal of Neurological and Neurosurgical Psychiatry, 78, 819824.Google Scholar
Håkansson, K., Rovio, S., Helkala, E.L., et al. (2009). Association between mid-life marital status and cognitive function in later life: Population based cohort study. British Medical Journal, 339, b2462. doi: 10.1136/bmj.b2462.Google Scholar
Haro, J. M., Kahle-Wrobleski, K., Bruno, G., et al. (2014). Analysis of burden in caregivers of people with Alzheimer’s disease using self-report and supervision hours. Journal of Nutrition, Health, & Aging, 18, 677684. doi: 10.1007/s12603-014-0036-0.Google Scholar
Hogervorst, E., Williams, J., Budge, M., et al. (2000). The nature of the effect of female gonadal hormone replacement therapy on cognitive function in post-menopausal women: a meta-analysis. Neuroscience, 101, 485512.Google Scholar
Hughes, T. F., Andel, R., Small, B. J., et al. (2010). See comment in PubMed Commons belowMidlife fruit and vegetable consumption and risk of dementia in later life in Swedish twins. American Journal of Geriatric Psychiatry, 18, 413420. doi: 10.1097/JGP.0b013e3181c65250.Google Scholar
Ito, K., Corrigan, B., Zhao, Q., et al. (2011). Disease progression model for cognitive deterioration from Alzheimer’s Disease Neuroimaging Initiative database. Alzheimer’s and Dementia, 7, 151160. doi: 10.1016/j.jalz.2010.03.018.Google Scholar
Jellinger, K. A. (2013). Pathology and pathogenesis of vascular cognitive impairment-a critical update. Frontiers in Aging and Neuroscience, 5, 17. doi: 10.3389/fnagi.2013.00017.Google Scholar
Johansson, L., Guo, X., Waern, M., et al. (2010). Midlife psychological stress and risk of dementia: A 35-year longitudinal population study. Brain, 133(Pt 8), 22172224. doi: 10.1093/brain/awq116.Google Scholar
Kalaria, R. N., Maestre, G. E. Arizaga, R., et al. (2008). Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurology, 7, 812826.Google Scholar
Katz, M. J., Lipton, R. B., Hall, C. B., et al. (2012). Age-specific and sex-specific prevalence and incidence of mild cognitive impairment, dementia, and Alzheimer dementia in blacks and whites: a report from the Einstein Aging Study. Alzheimer Disease and Associated Disorders, 26, 335343. doi: 10.1097/WAD.0b013e31823dbcfc.Google Scholar
Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., et al. (1996). Chronic stress alters the immune response to influenza virus vaccine in older adults. Proceedings of the National Academy of Science, 93, 30433047.Google Scholar
Kiecolt-Glaser, J. K., Marucha, P. T., Malarkey, W. B., et al. (1995). Slowing of wound healing by psychological stress. Lancet, 346, 11941196.Google Scholar
LeBlanc, E. S., Janowsky, J., Chan, B.K.S., et al. (2001). Hormone replacement therapy and cognition: Systematic review and metaanalysis. JAMA, 285, 14891499.Google Scholar
Lehmann, S. W., Black, B. S., Shore, A., et al. (2010). Living alone with dementia: lack of awareness adds to functional and cognitive vulnerabilities. International Psychogeriatrics, 22, 778784. doi: 10.1017/S1041610209991529Google Scholar
Lethaby, A., Hogervorst, E., Richards, M., et al. (2008). Hormone replacement therapy for cognitive function in postmenopausal women. Cochrane Database Systematic Reviews, 1: CD003122. doi: 10.1002/14651858.CD003122.pub2.Google Scholar
Lövheim, H., Sandman, P. O., Karlsson, S., et al. (2009). Sex differences in the prevalence of behavioral and psychological symptoms of dementia. International Psychogeriatrics, 21, 469475.Google Scholar
Lupien, S. J., Fiocco, A., Wan, N., et al. (2005). Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology, 30, 225242.Google Scholar
Lynn, R. and Martin, T. (1997). Gender differences in extraversion, neuroticism, and psychoticism in 37 nations. The Journal of Social Psychology, 137, 369373.Google Scholar
Majic, T., Pluta, J. P., Mell, T., et al. (2012). Correlates of agitation and depression in nursing home residents with dementia. International Psychogeriatrics, 24, 17791789.Google Scholar
Mitchell, A. J., Meader, N. and Pentzek, M. (2011). Clinical recognition of dementia and cognitive impairment in primary care: A meta-analysis of physician accuracy. Acta Psychiatry Scandanavia, 124, 165183.Google Scholar
Munro, C. A. (2014). Sex differences in Alzheimer’s disease risk: Are we looking at the wrong hormones? International Psychogeriatrics, 26,15791584. doi:10.1017/S1041610214001549Google Scholar
National Alliance for Caregiving (2009). Caregiving in the U.S. Retrieved November 2, 2010, from www.caregiving.org/data/Caregiving_in_the_US_2009_full_report.pdf.Google Scholar
Nehen, N-G. and Hermann, D. M. (2014). Supporting dementia patients and their caregivers in daily life challenges: review of physical, cognitive, and psychosocial rehabilitation studies. European Journal of Neurology, Aug 7. doi: 10.1111/ene.12535. [Epub ahead of print]Google Scholar
Nelson, P. T., Jicha, G. A., Kryscio, R. J., et al. (2010). Low sensitivity in clinical diagnoses of dementia with Lewy bodies. Journal of Neurology, 257(3), 359366.Google Scholar
Noale, M., Limongi, F., Zambon, S., et al. (2013). Incidence of dementia: evidence for an effect modification by gender. The ILSA Study. International Psychogeriatrics, 25, 18671876. doi: 10.1007/s00415-010-5630-4.Google Scholar
Oda, H., Yamamoto, Y. and Maeda, K. (2009). Neurospsychological profile of dementia with Lewy bodies. Psychogeriatrics, 9, 8590.Google Scholar
Onyike, C. U. and Diehl-Schmid, J. (2013). The epidemiology of frontotemporal dementia. International Review of Psychiatry, 25, 130137. doi: 10.3109/09540261.2013.776523.Google Scholar
Ott, B. R., Tate, C. A., Gordon, N. M., et al. (1996). Gender differences in the behavioral manifestations of Alzheimer’s disease. Journal of the American Geriatrics Society, 44, 583587.Google Scholar
Otte, C., Hart, S., Neylan, T. C., et al. (2005). A meta-analysis of cortisol response to challenge in human aging: importance of gender. Psychoneuroendocrinology, 30, 8091.Google Scholar
Ownby, R. L., Crocco, E., Acevedo, A., et al. (2006). Depression and risk for Alzheimer disease: Systematic review, meta-analysis, and metaregression analysis. Archives of General Psychiatry, 63, 530538.Google Scholar
Ozekmekçi, S., Apaydin, H. and Kiliç, E. (2005). Clinical features of 35 patients with Parkinson’s disease displaying REM behavior disorder. Clinical Neurology and Neurosurgery, 107, 306309.Google Scholar
Perez, F., Helmer, C., Dartigues, J. F., et al. (2010). A 15-year population-based cohort study of the incidence of Parkinson’s disease and dementia with Lewy bodies in an elderly French cohort. Journal of Neurological and Neurosurgical Psychiatry, 81, 742746. doi:10.1136/jnnp.2009.189142.Google Scholar
Petersen, R. C., Roberts, R. O., Knopman, D. S., et al. (2010). Prevalence of mild cognitive impairment is higher in men: The Mayo Clinic Study of Aging. Neurology, 75, 889897. doi: 10.1212/WNL.0b013e3181f11d85.Google Scholar
Phung, T. K., Waltoft, B. L., Laursen, T. M., et al. (2010). Hysterectomy, oophorectomy and risk of dementia: a nationwide historical cohort study. Dementia and Geriatric Cognitive Disorders, 30, 4350. doi: 10.1159/000314681.Google Scholar
Pinquart, M. and Sörensen, S. (2011). Spouses, adult children, and children-in-law as caregivers of older adults: A meta-analytic comparison. Psychology and Aging, 26, 114.Google Scholar
Plassman, B. L., Langa, K. M., Fisher, G. G., et al. (2007). Prevalence of dementia in the United States: The aging, demographics, and memory Study. Neuroepidemiology, 29, 125132.Google Scholar
Prince, M., Bryce, R., Albanese, E., et al. (2013). The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s & Dementia, 9, 6375.Google Scholar
Pringsheim, T., Jette, N., Frolkis, A., et al. (2014). The prevalence of Parkinson disease: A systematic review and meta-analysis. Movement Disorders, Jun 28. doi: 10.1002/mds.25945. [Epub ahead of print].Google Scholar
Ratnavalli, E., Brayne, C., Dawson, K., et al. (2002). The prevalence of frontotemporal dementia. Neurology, 58, 16151621.Google Scholar
Rocca, W. A., Grossardt, B. R., Shuster, L. T., et al. (2012). Hysterectomy, oophorectomy, estrogen, and the risk of dementia. Neurodegenerative Disorders, 10, 175178. doi: 10.1159/000334764.Google Scholar
Rosenberg, P. B., Mielke, M. M., Xue, Q. L., et al. (2010). Depressive symptoms predict incident cognitive impairment in cognitive healthy older women. American Journal of Geriatric Psychiatry, 18, 204211. doi: 10.1097/JGP.0b013e3181c53487.Google Scholar
Russ, T. C., Stamatakis, E., Hamer, M., et al. (2013). Socioeconomic status as a risk factor for dementia death: Individual participant meta-analysis of 86 508 women and men from the UK. British Journal of Psychiatry, 203, 1017. doi: 10.1192/bjp.bp.112.119479.Google Scholar
Sachdev, P. S., Lipnicki, D. M., Crawford, J., et al. (2012). Risk profiles for mild cognitive impairment vary by age and xex: The Sydney Memory and Ageing Study. The American Journal of Geriatric Psychiatry, 20(10), 854865. doi:10.1097/JGP.0b013e31825461b0.Google Scholar
Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory. Neuropsychology, 7, 273295.Google Scholar
Savica, R., Grossardt, B. R., Bower, J. H., et al. (2013). Incidence of dementia with Lewy bodies and Parkinson disease dementia. JAMA Neurology, 70, 13961402. doi: 10.1001/jamaneurol.2013.3579.Google Scholar
Schulz, R., Newsom, J., Mittelmark, M., et al. (1997). Health effects of caregiving: The Caregiver Health Effects Study: An ancillary study of The Cardiovascular Health Study. Annals of Behavioral Medicine, 19, 110116.Google Scholar
Schulz, R. and Beach, S. R. (1999). Caregiving as a risk factor for mortality. JAMA, 282, 22152219.Google Scholar
Shao, H., Breitner, J. C., Whitmer, R. A., et al. (2012). Hormone therapy and Alzheimer disease dementia: New findings from the Cache County Study. Neurology, 79, 18461852. doi: 10.1212/WNL.0b013e318271f823.Google Scholar
Shumaker, S. A., Legault, C., Rapp, S., et al. (2003). Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: The women’s health initiative memory study: A randomized controlled trial. JAMA, 289, 26512662. doi:10.1001/jama.289.20.2651.Google Scholar
Sobow, T. and Kloszewska, I. (2004). Parity, number of pregnancies, and the age of onset of Alzheimer’s disease. Journal of Neuropsychiatry and Clinical Neurosciences, 16(1), 120121.Google Scholar
Steinberg, M., Corcoran, C., Tschanz, J. T., et al. (2006). Risk factors for neuropsychiatric symptoms in dementia: the Cache County Study. International Journal of Geriatric Psychiatry, 21, 824830.Google Scholar
Takahashi, T., Ikeda, K., Ishikawa, M., et al. (2004). Social stress-induced cortisol elevation acutely impairs social memory in humans. Neuroscience Letters, 363, 125130.Google Scholar
Terracciano, A., Sutin, A. R., An, Y., O’Brien, R. J., Ferrucci, L., Zonderman, A. B. and Resnick, S. M. (2014). Personality and risk of Alzheimer’s disease: New data and meta-analysis. Alzheimer’s and Dementia, 10(2), 179186. doi: 10.1016/j.jalz.2013.03.002.Google Scholar
Twelves, D., Perkins, K.S.M. and Counsell, C. (2003). Systematic review of incidence studies of Parkinson’s disease. Movement Disorders, 18, 1931.Google Scholar
Valcour, V. G., Masaki, K. H., Curb, J. D., et al. (2000). The detection of dementia in the primary care setting. Archives of Internal Medicine, 160, 29642968. doi:10.1001/archinte.160.19.2964.Google Scholar
Vercambre, M. N., Grodstein, F., Manson, J. E., et al. (2011). Physical activity and cognition in women with vascular conditions. Archives of Internal Medicine, 171, 12581259.Google Scholar
Vidarsdottir, H., Fang, F., Chang, M., et al. (2014). Spousal loss and cognitive function in later life: A 25-year follow-up in the AGES-Reykjavik Study. American Journal of Epidemiology, 179, 674683.Google Scholar
Wassertheil-Smoller, S., Hendrix, S., Limacher, M., et al. (2003). Effect of estrogen plus progestin on stroke in postmenopausal women: The Women’s Health Initiative: A randomized trial. JAMA, 289, 26732684. doi:10.1001/jama.289.20.2673.Google Scholar
Weisman, D. and McKeith, I. (2007). Dementia with Lewy bodies. Seminars in Neurology, 27, 4247.Google Scholar
Whitmer, R. A., Quesenberry, C. P., Zhou, J., et al. (2011). Timing of hormone therapy and dementia: the critical window theory revisited. Annals of Neurology, 69, 163169. doi: 10.1002/ana.22239. Epub Nov 12, 2010.Google Scholar
Wolf, O. T., Schommer, N. C., Hellhammer, D. H., et al. (2001). The relationship between stress-induced cortisol levels and memory differs between women and men. Psychoneuroendocrinology, 26, 711720.Google Scholar
Wolf, O. T., Kudielka, B. M., Hellhammer, D. H., et al. (1998). Opposing effects of DHEA replacement in elderly subjects on declarative memory and attention after exposure to a laboratory stressor. Psychoneuroendocrinology, 23, 617629.Google Scholar
Writing Group for the Women’s Health Initiative Investigators (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women’s Health Initiative randomized controlled trial. JAMA, 288, 321333.Google Scholar
Xing, Y., Wei, C., Chu, C., et al. (2012). Stage-specific gender differences in cognitive and neuropsychiatric manifestations of vascular dementia. American Journal of Alzheimer’s Disease and Other Dementias, 27, 433438. doi: 10.1177/1533317512454712.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×