Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T19:40:05.560Z Has data issue: false hasContentIssue false

Effect of Xe bubble size and pressure on the thermal conductivity of UO2—A molecular dynamics study

Published online by Cambridge University Press:  11 April 2019

Weiming Chen
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
Michael W.D. Cooper
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Ziqi Xiao
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
David A. Andersson
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Xian-Ming Bai*
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA; and Fuel Modeling and Simulation Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, USA
*
a)Address all correspondence to this author. e-mail: xmbai@vt.edu
Get access

Abstract

Thermal conductivity of uranium dioxide (UO2) is an important nuclear fuel performance property. Radiation- and fission-induced defects and microstructures, such as xenon (Xe) gas bubbles, can degrade the thermal conductivity of UO2 significantly. Here, molecular dynamics simulations are conducted to study the effect of Xe bubble size and pressure on the thermal conductivity of UO2. At a given porosity, thermal conductivity increases with Xe cluster size, then reaches a nearly saturated value at a cluster radius of 0.6 nm, demonstrating that dispersed Xe atoms result in a lower thermal conductivity than clustering them into bubbles. In comparison with empty voids of the same size, Xe-filled bubbles lead to a lower thermal conductivity when the number ratio of Xe atoms to uranium vacancies (Xe:VU ratio) in bubbles is high. Detailed atomic-level analysis shows that the pressure-induced distortion of atoms at bubble surface causes additional phonon scattering and thus further reduces the thermal conductivity.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wiss, T.: 2.18—Radiation effects in UO2. In Comprehensive Nuclear Materials, Konings, R.J.M., ed. (Elsevier, Oxford, 2012); pp. 465480.CrossRefGoogle Scholar
Rondinella, V.V. and Wiss, T.: The high burn-up structure in nuclear fuel. Mater. Today 13, 2432 (2010).CrossRefGoogle Scholar
Stehle, H.: Performance of oxide nuclear fuel in water-cooled power reactors. J. Nucl. Mater. 153, 315 (1988).CrossRefGoogle Scholar
Kashibe, S., Une, K., and Nogita, K.: Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6–83 GWd/t. J. Nucl. Mater. 206, 2234 (1993).CrossRefGoogle Scholar
Muromura, T., Adachi, T., Takeishi, H., Yoshida, Z., Yamamoto, T., and Ueno, K.: Metallic phases precipitated in UO2 fuel: I. Phases in simulated fuel. J. Nucl. Mater. 151, 327333 (1988).CrossRefGoogle Scholar
He, L.F., Pakarinen, J., Kirk, M.A., Gan, J., Nelson, A.T., Bai, X.M., El-Azab, A., and Allen, T.R.: Microstructure evolution in Xe-irradiated UO2 at room temperature. Nucl. Instrum. Methods Phys. Res., Sect. B 330, 5560 (2014).CrossRefGoogle Scholar
Ronchi, C., Sheindlin, M., Staicu, D., and Kinoshita, M.: Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWd t−1. J. Nucl. Mater. 327, 5876 (2004).CrossRefGoogle Scholar
Fink, J.K.: Thermophysical properties of uranium dioxide. J. Nucl. Mater. 279, 118 (2000).CrossRefGoogle Scholar
Liu, X-Y., Stanek, C.R., and Andersson, A.D.R.: Effect of Point Defects on the Thermal Conductivity of UO2: Molecular Dynamics Simulations (Los Alamos National Laboratory (LA-UR-15-28086), United States, 2015).CrossRefGoogle Scholar
Tonks, M.R., Liu, X-Y., Andersson, D., Perez, D., Chernatynskiy, A., Pastore, G., Stanek, C.R., and Williamson, R.: Development of a multiscale thermal conductivity model for fission gas in UO2. J. Nucl. Mater. 469, 8998 (2016).CrossRefGoogle Scholar
Liu, X.Y., Cooper, M.W.D., McClellan, K.J., Lashley, J.C., Byler, D.D., Bell, B.D.C., Grimes, R.W., Stanek, C.R., and Andersson, D.A.: Molecular dynamics simulation of thermal transport in UO2 containing uranium, oxygen, and fission-product defects. Phys. Rev. Appl. 6, 044015 (2016).CrossRefGoogle Scholar
Bai, X.M., Tonks, M.R., Zhang, Y.F., and Hales, J.D.: Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels. J. Nucl. Mater. 470, 208215 (2016).CrossRefGoogle Scholar
Lee, C.W., Chernatynskiy, A., Shukla, P., Stoller, R.E., Sinnott, S.B., and Phillpot, S.R.: Effect of pores and He bubbles on the thermal transport properties of UO2 by molecular dynamics simulation. J. Nucl. Mater. 456, 253259 (2015).CrossRefGoogle Scholar
Deng, B., Chernatynskiy, A., Shukla, P., Sinnott, S.B., and Phillpot, S.R.: Effects of edge dislocations on thermal transport in UO2. J. Nucl. Mater. 434, 203209 (2013).CrossRefGoogle Scholar
Chen, T., Chen, D., Sencer, B.H., and Shao, L.: Molecular dynamics simulations of grain boundary thermal resistance in UO2. J. Nucl. Mater. 452, 364369 (2014).CrossRefGoogle Scholar
Millett, P.C. and Tonks, M.: Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity. J. Nucl. Mater. 412, 281286 (2011).CrossRefGoogle Scholar
Staicu, D.: 2.17—Thermal properties of irradiated UO2 and MOX. In Comprehensive Nuclear Materials, Konings, R.J.M., ed. (Elsevier, Oxford, 2012); pp. 439464.CrossRefGoogle Scholar
Agarwala, R.P.: Diffusion Processes in Nuclear Materials (North-Holland, Amsterdam, 1992).Google Scholar
Moore, E., René Corrales, L., Desai, T., and Devanathan, R.: Molecular dynamics simulation of Xe bubble nucleation in nanocrystalline UO2 nuclear fuel. J. Nucl. Mater. 419, 140144 (2011).CrossRefGoogle Scholar
Andersson, A.D., Perriot, R.T., Pastore, G., Tonks, M.R., Cooper, M.W., Liu, X-Y., Goyal, A., Uberuaga, B.P., and Stanek, C.R.: Report on Simulation of Fission Gas and Fission Product Diffusion in UO2 (Los Alamos National Laboratory (LA-UR-15-28086), United States, 2016).CrossRefGoogle Scholar
Maxwell, J.C.: A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1881).Google Scholar
Olander, D.R.: Fundamental Aspects of Nuclear Reactor Fuel Elements (California University (TID-26711-P1), United States, 1976).CrossRefGoogle Scholar
Alvarez, F.X., Jou, D., and Sellitto, A.: Pore-size dependence of the thermal conductivity of porous silicon: A phonon hydrodynamic approach. Appl. Phys. Lett. 97, 033103 (2010).CrossRefGoogle Scholar
Murphy, S.T., Chartier, A., Van Brutzel, L., and Crocombette, J.P.: Free energy of Xe incorporation at point defects and in nanovoids and bubbles in UO2. Phys. Rev. B 85, 144102 (2012).CrossRefGoogle Scholar
Jackson, R.A. and Catlow, C.R.A.: Trapping and solution of fission Xe in UO2: Part 1. Single gas atoms and solution from underpressurized bubbles. J. Nucl. Mater. 127, 161166 (1985).CrossRefGoogle Scholar
Jackson, R.A. and Catlow, C.R.A.: Trapping and solution of fission Xe in UO2: Part 2. Solution from small overpressurized bubbles. J. Nucl. Mater. 127, 167169 (1985).CrossRefGoogle Scholar
Turnbull, J.A.: The distribution of intragranular fission gas bubbles in UO2 during irradiation. J. Nucl. Mater. 38, 203212 (1971).CrossRefGoogle Scholar
Chernatynskiy, A., Bai, X-M., and Gan, J.: Systematic investigation of the misorientation- and temperature-dependent Kapitza resistance in CeO2. Int. J. Heat Mass Transfer 99, 461469 (2016).CrossRefGoogle Scholar
Schelling, P.K., Phillpot, S.R., and Keblinski, P.: Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65, 144306 (2002).CrossRefGoogle Scholar
Müller-Plathe, F.: A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 60826085 (1997).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 119 (1995).CrossRefGoogle Scholar
Basak, C.B., Sengupta, A.K., and Kamath, H.S.: Classical molecular dynamics simulation of UO2 to predict thermophysical properties. J. Alloys Compd. 360, 210216 (2003).CrossRefGoogle Scholar
Geng, H.Y., Chen, Y., Kaneta, Y., and Kinoshita, M.: Molecular dynamics study on planar clustering of xenon in UO2. J. Alloys Compd. 457, 465471 (2008).CrossRefGoogle Scholar
Cooper, M.W.D., Kuganathan, N., Burr, P.A., Rushton, M.J.D., Grimes, R.W., Stanek, C.R., and Andersson, D.A.: Development of Xe and Kr empirical potentials for CeO2, ThO2, UO2, and PuO2, combining DFT with high temperature MD. J. Phys.: Condens. Matter 28, 405401 (2016).Google ScholarPubMed
Cooper, M.W.D., Rushton, M.J.D., and Grimes, R.W.: A many-body potential approach to modelling the thermomechanical properties of actinide oxides. J. Phys.: Condens. Matter 26, 105401 (2014).Google ScholarPubMed
Chernatynskiy, A., Flint, C., Sinnott, S.B., and Phillpot, S.R.: Critical assessment of UO2 classical potentials for thermal conductivity calculations. J. Mater. Sci. 47, 76937702 (2012).CrossRefGoogle Scholar
Lee, Y., Lee, S., and Hwang, G.S.: Effects of vacancy defects on thermal conductivity in crystalline silicon: A nonequilibrium molecular dynamics study. Phys. Rev. B 83, 125202 (2011).CrossRefGoogle Scholar
Choi, S-H., Maruyama, S., Kim, K-K., and Lee, J-H.: Evaluation of the phonon mean free path in thin films by using classical molecular dynamics. J. Korean Phys. Soc. 43, 747753 (2003).CrossRefGoogle Scholar
Nikolopoulos, P. and Ondracek, G.: Conductivity bounds for porous nuclear fuels. J. Nucl. Mater. 114, 231233 (1983).CrossRefGoogle Scholar
Liu, X.Y. and Andersson, D.A.: Molecular dynamics study of fission gas bubble nucleation in UO2. J. Nucl. Mater. 462, 814 (2015).CrossRefGoogle Scholar
Hu, L., Wirth, B.D., and Maroudas, D.: Thermal conductivity of tungsten: Effects of plasma-related structural defects from molecular-dynamics simulations. Appl. Phys. Lett. 111, 081902 (2017).CrossRefGoogle Scholar
Garcia, P., Martin, P., Carlot, G., Castelier, E., Ripert, M., Sabathier, C., Valot, C., D’Acapito, F., Hazemann, J.L., Proux, O., and Nassif, V.: A study of xenon aggregates in uranium dioxide using X-ray absorption spectroscopy. J. Nucl. Mater. 352, 136143 (2006).CrossRefGoogle Scholar
Ronchi, C.: Extrapolated equation of state for rare gases at high temperatures and densities. J. Nucl. Mater. 96, 314328 (1981).CrossRefGoogle Scholar
Nogita, K. and Une, K.: High resolution TEM observation and density estimation of Xe bubbles in high burnup UO2 fuels. Nucl. Instrum. Methods Phys. Res., Sect. B 141, 481486 (1998).CrossRefGoogle Scholar
Tang, K.T. and Toennies, J.P.: The van der Waals potentials between all the rare gas atoms from He to Rn. J. Chem. Phys. 118, 49764983 (2003).CrossRefGoogle Scholar
Cooper, M.W.D., Rushton, M.J.D., and Grimes, R.W.: Potential model for fission gases in actinide oxides. Retrieved from http://abulafia.mt.ic.ac.uk/potentials/actinide_potentials_gases/v1.0/index.html.Google Scholar