Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T13:01:38.628Z Has data issue: false hasContentIssue false

Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels

Published online by Cambridge University Press:  11 August 2017

Ioannis Azoidis
Affiliation:
Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
Joel Metcalfe
Affiliation:
Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
James Reynolds
Affiliation:
Lein Applied Diagnostics Ltd, Reading Enterprise Centre, Whiteknights Road, Reading RG6 6BU, UK
Shirley Keeton
Affiliation:
Cell Migration Lab, School of Biological Sciences, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
Sema S. Hakki
Affiliation:
Selcuk University Faculty of Dentistry Department of Periodontology Campus, 42079 Konya, Turkey
Jonathan Sheard
Affiliation:
Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK Sheard BioTech Limited, Suite LP36133, 20-22, Wenlock Road, London N17GU, UK
Darius Widera*
Affiliation:
Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
*
Address all correspondence to Darius Widera at d.widera@reading.ac.uk
Get access

Abstract

Human mesenchymal stem cells (MSCs) are the most intensely studied and clinically used adult stem cell type. Conventional long-term cultivation of MSCs as a monolayer is known to result in a reduction of their functionality and viability. In addition, large volumes of cell culture medium are required to obtain cell quantities needed for their clinical use. In this proof of concept study, we cultivated human MSCs within a three-dimensional nanofibrillar cellulose (NFC) hydrogel. We show that NFC is biocompatible with human MSCs, and represents a feasible approach to upscaling of their culture.

Type
Biomaterials for 3D Cell Biology Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sharma, R.R., Pollock, K., Hubel, A., and McKenna, D.: Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54, 1418 (2014).Google Scholar
2.Gnecchi, M., He, H., Noiseux, N., Liang, O.D., Zhang, L., Morello, F., Mu, H., Melo, L.G., Pratt, R.E., Ingwall, J.S., and Dzau, V.J.: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20, 661 (2006).Google Scholar
3.Lai, R.C., Arslan, F., Lee, M.M., Sze, N.S., Choo, A., Chen, T.S., Salto-Tellez, M., Timmers, L., Lee, C.N., El Oakley, R.M., Pasterkamp, G., de Kleijn, D.P., and Lim, S.K.: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4, 214 (2010).Google Scholar
4.Kordelas, L., Rebmann, V., Ludwig, A.K., Radtke, S., Ruesing, J., Doeppner, T.R., Epple, M., Horn, P.A., Beelen, D.W., and Giebel, B.: MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28, 970 (2014).Google Scholar
5.Ben-David, U., Mayshar, Y., and Benvenisty, N.: Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 9, 97 (2011).Google Scholar
6.Bara, J.J., Richards, R.G., Alini, M., and Stoddart, M.J.: Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32, 1713 (2014).Google Scholar
7.Turinetto, V., Vitale, E., and Giachino, C.: Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int. J. Mol. Sci. 17, 1164 (2016).Google Scholar
8.Ho, S.S., Murphy, K.C., Binder, B.Y., Vissers, C.B., and Leach, J.K.: Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Transl. Med. 5, 773 (2016).Google Scholar
9.Lund, A.W., Stegemann, J.P., and Plopper, G.E.: Mesenchymal stem cells sense three dimensional type I collagen through discoidin domain receptor 1. Open Stem Cell J. 1, 40 (2009).Google Scholar
10.Gardner, O.F., Musumeci, G., Neumann, A.J., Eglin, D., Archer, C.W., Alini, M., and Stoddart, M.J.: Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. J. Tissue Eng. Regen. Med. (2016). doi: 10.1002/term.Google Scholar
11.Favi, P.M., Benson, R.S., Neilsen, N.R., Hammonds, R.L., Bates, C.C., Stephens, C.P., and Dhar, M.S.: Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 1935 (2013).Google Scholar
12.Cochis, A., Grad, S., Stoddart, M.J., Fare, S., Altomare, L., Azzimonti, B., Alini, M., and Rimondini, L.: Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci. Rep. 7, 45018 (2017).Google Scholar
13.Yamaguchi, Y., Ohno, J., Sato, A., Kido, H., and Fukushima, T.: Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential. BMC Biotechnol. 14, 105 (2014).Google Scholar
14.Serban, M.A., Liu, Y., and Prestwich, G.D.: Effects of extracellular matrix analogues on primary human fibroblast behavior. Acta Biomater. 4, 67 (2008).Google Scholar
15.Lou, Y.R., Kanninen, L., Kuisma, T., Niklander, J., Noon, L.A., Burks, D., Urtti, A., and Yliperttula, M.: The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev. 23, 380 (2014).Google Scholar
16.Bhattacharya, M., Malinen, M.M., Lauren, P., Lou, Y.R., Kuisma, S.W., Kanninen, L., Lille, M., Corlu, A., GuGuen-Guillouzo, C., Ikkala, O., Laukkanen, A., Urtti, A., and Yliperttula, M.: Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control Release 164, 291 (2012).Google Scholar
17.Malinen, M.M., Kanninen, L.K., Corlu, A., Isoniemi, H.M., Lou, Y.R., Yliperttula, M.L., and Urtti, A.O.: Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35, 5110 (2014).Google Scholar
18.Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315 (2006).Google Scholar
19.Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676 (2012).Google Scholar
20.Kaus, A., Widera, D., Kassmer, S., Peter, J., Zaenker, K., Kaltschmidt, C., and Kaltschmidt, B.: Neural stem cells adopt tumorigenic properties by constitutively activated NF-kappaB and subsequent VEGF up-regulation. Stem Cells Dev. 19, 999 (2010).Google Scholar
21.Petersen, O.W., Rønnov-Jessen, L., Howlett, A.R., and Bissell, M.J.: Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 89, 9064 (1992).Google Scholar
22.Yang, C.M., Huang, Y.J., and Hsu, S.H.: Enhanced autophagy of adipose-derived stem cells grown on chitosan substrates. Biores Open Access 4, 89 (2015).Google Scholar
23.Kleinman, H.K. and Martin, G.R.: Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378 (2005).Google Scholar
24.Paletta, J.R., Mack, F., Schenderlein, H., Theisen, C., Schmitt, J., Wendorff, J.H., Agarwal, S., Fuchs-Winkelmann, S., and Schofer, M.D.: Incorporation of osteoblasts (MG63) into 3D nanofibre matrices by simultaneous electrospinning and spraying in bone tissue engineering. Eur. Cell Mater. 21, 384 (2011).Google Scholar
25.Paukkonen, H., Ukkonen, A., Szilvay, G., Yliperttula, M., and Laaksonen, T.: Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. Eur. J. Pharm. Sci. 100, 238 (2017).Google Scholar
26.Modulevsky, D.J., Cuerrier, C.M., and Pelling, A.E.: Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLoS ONE 11, e0157894 (2016).Google Scholar
27.Lopes, V.R., Sanchez-Martinez, C., Stromme, M., and Ferraz, N.: In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part. Fibre Toxicol. 14, 1 (2017).Google Scholar