Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T15:49:17.590Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 April 2017

Eugene S. Morton
Affiliation:
Smithsonian Institution, Washington DC
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Animal Vocal Communication
Assessment and Management Roles
, pp. 212 - 245
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acredolo, L. P. & Goodwyn, S. W. (1990). Sign language in babies: The significance of symbolic gesturing for understanding language development. In Annals of Child Development, 7, ed. Vasta, R., pp. 142. London: Jessica Kingsley Publishers.Google Scholar
Adams, F. & Beighley, S. M. (2013). Information, meaning and animal communication. In Animal Communication Theory, Information and Influence, ed. Stegmann, U., pp. 399420. Cambridge: Cambridge University Press.Google Scholar
Adams, E. S. & Caldwell, R. L. (1990). Deceptive communication in asymmetric fights of the stomatopod crustacean Gonodactylus bredini. Animal Behaviour, 39, 706–16.Google Scholar
Adret, P. (1993). Operant conditioning, song learning and imprinting to taped song in the zebra finch. Animal Behaviour, 46, 149–59.Google Scholar
Agmo, A. & Berenfeld, R. (1990). Reinforcing properties of ejaculation in the male rat: Role of opioids and dopamine. Behavioral Neuroscience, 104, 177–82.Google Scholar
Aihara, I., de Silva, P. & Bernal, X. E. (2016). Acoustic preference of frog-biting midges (Corethrella spp) attacking Tứngara frogs in their natural habitat. Ethology, 122, 105–13.Google Scholar
Alatalo, R. V., Carlson, A., Lundberg, A. & Ulfstrand, S. (1981). The conflict between male polygamy and female monogamy: the case of the pied flycatcher, Ficedula hypoleuca. American Naturalist, 117, 738–53.Google Scholar
Alatalo, R. V., Glynn, C. & Lundberg, A. (1990). Singing rate and female attraction in the pied flycatcher: an experiment. Animal Behaviour, 39, 601–3.Google Scholar
Alcock, J. (1989). Animal Behavior: An Evolutionary Approach. Sunderland: Sinauer Associates.Google Scholar
Anderson, C. O. & Mason, W. A. (1974). Early experience and complexity of social organization in groups of young rhesus monkeys (Macaca mulatta). Journal of Comparative and Physiological Psychology, 87, 681–90.Google Scholar
Andersson, M. (1986). Evolution of condition-dependent sex ornaments and mating preferences: Sexual selection based on viability differences. Evolution, 40, 804–16.Google Scholar
Andersson, M. (1994). Sexual Selection. Princeton: Princeton University Press.Google Scholar
Andrew, R. J. (1963). The origin and evolution of the calls and facial expressions of the primates. Behaviour, 20, 1109.Google Scholar
Apicella, C. L. & Feinberg, D. R. (2009). Voice pitch alters mate-choice-relevant perception in hunter-gatherers. Proceedings of the Royal Society B, 276, 1077–82.Google Scholar
Arak, A. (1983). Sexual selection by male–male competition in natterjack toad choruses. Nature, 306, 261–2.Google Scholar
Arbib, M. A. (2013). Language, music, and the brain: a mysterious relationship. Cambridge, MA: MIT Press.Google Scholar
Archer, J. (1988). The Behavioural Biology of Aggression. Cambridge: Cambridge University Press.Google Scholar
Arnold, A. P., Bottjer, S. W., Brenowitz, E. A., Nordeen, E. J. & Nordeen, K. W. (1986). Sexual dimorphisms in the neural vocal control system in song birds: ontogeny and phylogeny. Brain, Behavior and Evolution, 28, 2231.Google Scholar
Arnold, S. J. (1994). Constraints on phenotypic evolution. In Behavioral Mechanisms in Evolutionary Ecology, ed. Real, L. A., pp. 258–78. Chicago: University of Chicago Press.Google Scholar
Arnqvist, G. & Rowe, L. (2005). Sexual Conflict. Princeton: Princeton University Press.Google Scholar
Arrowood, P. C. (1988). Duetting, pair bonding and agonistic display in parakeet pairs. Behaviour, 106, 129–57.Google Scholar
Arvidsson, B. L. & Neergaard, R. (1991). Mate choice in the willow warbler – a field experiment. Behavioral Ecology Sociobiology, 29, 225–9.Google Scholar
Aubin, T. (1987). Respective parts of the carrier and of the frequency modulation in the semantics of distress calls. Behaviour, 100, 123–33.Google Scholar
Aubin, T. (1991). Why do distress calls evoke interspecific responses? An experimental study applied to some species of birds. Behavioural Processes, 23, 103–11.Google Scholar
August, P. V. & Anderson, J. G. T. (1987). Mammal sounds and motivation-structural rules: a test of the hypothesis. Journal of Mammalogy, 68, 19.Google Scholar
Austen, M. J. W. & Handford, P. T. (1991). Variation in the songs of breeding Gambel’s white-crowned sparrows near Churchill, Manitoba. Condor, 93, 147–52.Google Scholar
Bacharowski, J. A. & Owren, M. J. (2001). Not all laughs are alike: voiced but not unvoiced laughter readily elicits affect. Psychological Science, 12, 252–7.Google Scholar
Baker, M. C. (1974). Genetic structure of two populations of white-crowned sparrows with different song dialects. Condor, 76, 351–6.Google Scholar
Baker, M.C. & Becker, A. M. (2002). Mobbing calls of black-capped chickadees: effects of urgency on call production. Wilson Bulletin, 114, 510–16.Google Scholar
Bakker, R. T. (1986). The dinosaur heresies: new theories unlocking the mystery of the dinosaurs and their extinction. New York: William Morrow.Google Scholar
Bálint, A., Faragó, T, Dóka, A., Miklósi, Á. & Pongrácz, P. (2013). “Beware I am big and non-dangerous!”—Playfully growling dogs are perceived larger than their actual size by their canine audience. Applied Animal Behaviour Science, 148, 128–37.Google Scholar
Baptista, L. F. (1975). Song dialects and demes in sedentary populations of the white-crowned sparrow, (Zonotrichia leucophrys nuttali). University of California Publications in Zoology, 105, 152.Google Scholar
Baptista, L. F. (1978). Territorial, courtship and duet songs of the Cuban grassquit (Tiaris canora). Journal für Ornithologie, 119, 91101.Google Scholar
Baptista, L. F. & Gaunt, S. L. L. (1994). Historical perspectives: Advances in studies of avian sound communication. Condor, 96, 817–30.Google Scholar
Baptista, L. F. & Petrinovich, L. (1984). Social interaction, sensitive phases and the song template hypothesis in the white-crowned sparrow. Animal Behaviour, 32, 172–81.Google Scholar
Barber, J. R., Crooks, K. R. & Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology and Evolution, 25, 180–9.Google Scholar
Barlow, G. W., Rogers, W. & Fraley, N. (1986). Do midas cichlids win through prowess or daring? It depends. Behavioral Ecology and Sociobiology, 19, 18.Google Scholar
Bateson, P. (1987). Imprinting as a process of competitive exclusion. In Imprinting and Cortical Plasticity: Comparative Aspects of Sensitive Periods. Wiley Series in Neuroscience, 1, ed. Rauschecker, J. P. and Marler, P., pp. 151–68. New York: John Wiley & Sons.Google Scholar
Beard, K. H. & O’Neill, E. M. (2005). Infection of an invasive frog Eleuthrodactylus coqui by the cytrid fungus Batrachochytrium dendrobatidis in Hawaii. Biological Conservation, 126, 591–5.Google Scholar
Bee, M. A. (2002). Territorial male bullfrogs (Rana catesbeiana) do not assess fighting ability based on size-related variation in acoustic signals. Behavioral Ecology, 13, 109–24.Google Scholar
Beecher, M. D., Campbell, S. E., Burt, J. M., Hill, C. E. & Nordby, J. C. (2000). Song-type matching between neighbouring song sparrows. Animal Behaviour, 59, 21–7.Google Scholar
Beehler, B. M. (2010). The forgotten science: a role for natural history in the Twenty-first century? Journal of Field Ornithology, 81, 14.Google Scholar
Beer, C. G. (1973). A view of birds. Minnesota Symposia on Child Psychology, 7, 4786.Google Scholar
Beer, C. G. (1975). Multiple functions and gull displays. In Function and Evolution in Behaviour, ed. Baerends, G., Beer, C. & Manning, A., pp. 1654. Oxford: Clarendon Press.Google Scholar
Beer, C. G. (1977). What is a display? American Zoologist, 17, 155–65.Google Scholar
Beer, C. (1982). Conceptual issues in the study of communication. In Acoustic Communication in Birds, Vol. 2, Song Learning and Its Consequences, ed. Kroodsma, D. E. & Miller, E. H., pp. 279310. New York: Academic Press.Google Scholar
Beissinger, S. R. (1990). Experimental brood manipulations and the monoparental threshold in Snail Kites. American Naturalist, 136, 2038.Google Scholar
Beletsky, L. D. (1983). Aggressive and pair-bonded maintenance songs of female red-winged blackbirds (Agelaius phoeniceus). Zeitschrift für Tierpsychologie, 62, 4754.Google Scholar
Belin, P., Fecteau, S., Charest, I. Nicastro, N., Hauser, M. D. & Armony, J. L. (2008). Human cerebral response to animal affective vocalizations. Proceedings of the Royal Society B, 275, 473–81. doi:10.1098/rspb.2007.1460.Google Scholar
Bench, J. (1969). Some effects of audio-frequency stimulation on the crying baby. Journal of Auditory Research, 9, 122–8.Google Scholar
Benedict, L., Rose, A. & Warning, N. (2012). Canyon wrens alter their songs in response to territorial challenges. Animal Behaviour, 84, 1463–7.Google Scholar
Berger, J. (1981). The role of risks in mammalian combat: Zebra and onager fights. Zeitschrift für Tierpsychologie, 56, 297304.Google Scholar
Berger, J. (1986). Wild Horses of the Great Basin: Social Competition and Population Size. Chicago: University of Chicago Press.Google Scholar
Bernieri, F. J., Reznick, J. S. & Rosenthal, R. (1988). Synchrony, pseudosynchrony, and dissynchrony: Measuring the entrainment process in mother–infant interactions. Journal of Personality and Social Psychology, 54, 243–53.Google Scholar
Berridge, K. C. (1996). Food reward – brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews, 20, 125.Google Scholar
Biesmeijer, J. C. & Seeley, T. D. (2005). The use of waggle dance by honey bees throughout their foraging careers. Behavioral Ecology and Sociobiology, 59, 133–42.Google Scholar
Bilger, R. C. & Hirsh, I. J. (1956). Masking of tones by bands of noise. Journal of the Acoustical Society of America, 28, 623–30.Google Scholar
Birns, B., Blank, M., Bridger, W. & Escalona, S. (1965). Behavioral inhibition in neonates produced by auditory stimuli. Child Development, 36, 639–45.Google Scholar
Bischof, H.-J. (1994). Sexual imprinting as a two-stage process. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. & Bolhuis, J. J., pp. 8297. Cambridge: Cambridge University Press.Google Scholar
Bischof, H.-J. & Clayton, N. (1991). Stabilization of sexual preferences by sexual experience in male zebra finches Taeniopygia guttata castanotis. Behaviour, 118, 144–55.Google Scholar
Bitterbaum, E. & Baptista, L. F. (1979). Geographical variation in songs of California house finches (Carpodacus mexicanus). Auk, 96, 462–74.Google Scholar
Blumberg, M. S. & Alberts, J. R. (1991). On the significance of similarities between ultrasonic vocalizations of infant and adult rats. Neuroscience and Biobehavioral Reviews, 15, 383–90.Google Scholar
Blumberg, M. S. & Alberts, J. R. (1997). Incidental emissions, fortuitous effects, and the origins of communication. In Communication. Perspectives in Ethology, 12, ed. Owings, D. H., Beecher, M. D. & Thompson, N. S.. New York: Plenum Press.Google Scholar
Blumenrath, S. A. & Dooling, R. J. (2006). Can birds discriminate between simple sounds and natural vocalization with different degrees of reverberation. Journal of the Acoustical Society of America, 120, 3325.Google Scholar
Boellstorff, D. E., Owings, D. H., Penedo, M. C. T. & Hersek, M. J. (1994). Reproductive behaviour and multiple paternity of California ground squirrels. Animal Behaviour, 47, 1057–64.Google Scholar
Bogert, C. M. (1960). The influence of sound on amphibians and reptiles. In Animal Sounds and Communication, ed. Lanyon, W. E. & Tavolga, W., pp. 137320. Washington: American Institute of Biological Science.Google Scholar
Bolhuis, J. J. (1991). Mechanisms of avian imprinting: a review. Biological Reviews, 66, 303–45.Google Scholar
Bolhuis, J. J. & Van Kampen, H. S. (1992). An evaluation of auditory learning in filial imprinting. Behaviour, 122, 195230.Google Scholar
Bolinger, D. L. (1989). Intonation and Its Uses: Melody in Grammar and Discourse. Stanford: Stanford University Press.Google Scholar
Bolles, R. C. (1970). Species-specific defense reactions and avoidance learning. Psychological Review, 77, 3248.Google Scholar
Boncoraglio, G. & Saino, N. (2007). Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Functional Ecology, 21, 134–42.Google Scholar
Bond, A. B. (1989a). Toward a resolution of the paradox of aggressive displays: I. Optimal deceit in the communication of fighting ability. Ethology, 81, 2946.Google Scholar
Bond, A. B. (1989b). Toward a resolution of the paradox of aggressive displays: II. Behavioral efference and the communication of intentions. Ethology, 81, 235–49.Google Scholar
Borror, D. J. (1956). Variation in Carolina wren songs. The Auk, 73, 211–29.Google Scholar
Bossema, I. & Burgler, R. R. (1980). Communication during monocular and binocular looking in European jays, (Garrulus g. glandiarus). Behaviour, 74, 274–83.Google Scholar
Bowlby, J. (1969). Attachment. New York: Basic Books.Google Scholar
Bowman, R. I. (1979). Adaptive morphology of song dialects in Darwin’s finches. Journal für Ornithologie, 120, 353–89.Google Scholar
Bradbury, J. W. & Vehrencamp, S. L. (2011). Web Topic 1.2: Information and Communication. Principles of Animal Communication. 2nd edn. companion website. http://sites.sinauer.com/animalcommunication2e/Google Scholar
Brenowitz, E. A. (1982). Long-range communication of species identity by song in the red-winged blackbird. Behavioral Ecology and Sociobiology, 10, 2938.Google Scholar
Broesch, T. L. and Bryant, G. A. (2015). Prosody in infant-directed speech is similar across western and traditional cultures. Journal of Cognition and Development, 16, 3143.Google Scholar
Brown, A. M. (1973). High levels of responsiveness from the inferior colliculus of rodents at ultrasonic frequencies. Journal of Comparative Physiology, 83, 393406.Google Scholar
Brown, C. H. (1982). Ventriloquial and locatable vocalizations in birds. Zeitschrift für Tierpsychologie, 59, 338–50.Google Scholar
Brumm, H. & Slabbekoorn, H. (2005). Acoustic communication in noise. Advances in the Study of Behavior, 35, 151209.Google Scholar
Bryant, G. A. & Aktipis, C. A. (2014). The animal nature of spontaneous human laughter. Evolution and Human Behavior, 35, 327–35.Google Scholar
Burghardt, G. M. (1970). Defining “communication.” In Communication by Chemical Signals. Advances in Chemoreception, 1, ed. Johnston, J. W. Jr, Moulton, D. G. & Turk, A., pp. 518. New York: Appleton-Century- Crofts.Google Scholar
Byers, B. C. & Kroodsma, D. K. (2009). Female mate choice and song repertoires. Animal Behavior, 77, 1322.Google Scholar
Byrne, J. M. & Horowitz, F. D. (1981). Rocking as a soothing intervention: The influence of direction and type of movement. Infant Behavior and Development, 4, 207–18.Google Scholar
Caine, N. G., Addington, R. L. & Windfelder, T. L. (1995). Factors affecting the rates of food calls given by red-bellied tamarins. Animal Behaviour, 50, 5360.Google Scholar
Caldwell, R. L. (1986). The deceptive use of reputation by stomatopods. In Deception: Perspectives on Human and Nonhuman Deceit, ed. Mitchell, R. W. & Thompson, N. S., pp. 129–45. Albany: State University of New York Press.Google Scholar
Cannon, W. B. (1935). Stresses and strains of homeostasis. The American Journal of the Medical Sciences, 189, 114.Google Scholar
Capp, M. S. & Searcy, W. A. (1991). Acoustical communication of aggressive intentions by territorial male bobolinks. Behavioral Ecology, 2, 319–26.Google Scholar
Capranica, R. R., Frishkopf, L. S. & Nevo, E. (1973). Encoding of geographic dialects in the auditory system of the cricket frog. Science, 182, 1272–5.Google Scholar
Caro, T. M. & Häuser, M. D. (1992). Is there teaching in nonhuman animals? Quarterly Review of Biology, 67, 151–74.Google Scholar
Cartei, V., Bond, R. & Reby, D. (2014). What makes a voice masculine: physiological and acoustical correlates of women’s ratings of men’s vocal masculinity. Hormones and Behavior, 66, 569–76.Google Scholar
Catchpole, C. K. & Leisler, B. (1989). Variation in the song of the aquatic warbler Acrocephalus paludicola in response to playback of different song structures. Behaviour, 108, 125–38.Google Scholar
Catchpole, C. K. & Slater, P. J. B. (1995). Bird Song, Biological Themes and Variations. Cambridge: Cambridge University Press.Google Scholar
Centorrino, S., Djemai, E., Hopfensitz, A., Milinski, M. & Seabright, P. (2015). Honest signaling in trust interactions: smiles rated as genuine induce trust and signal higher earning opportunities. Evolution and Human Behavior, 36, 816.Google Scholar
Chappuis, C. (1971). Un exemple de l’enfluence du milieu sur les emissions vocales des oiseaux: l’evolution des chants en foret equitoriale. Terre et Vie, 118, 183202.Google Scholar
Charnov, E. L. & Krebs, J. R. (1975). The evolution of alarm calls: altruism or manipulation? The American Naturalist, 109, 107–12.Google Scholar
Cheney, D. L. & Seyfarth, R. M. (1985). Vervet monkey alarm calls: manipulation through shared information? Behaviour, 94, 150–66.Google Scholar
Cheney, D. L. & Seyfarth, R. M. (1988). Assessment of meaning and the detection of unreliable signals by vervet monkeys. Animal Behaviour, 36, 477–86.Google Scholar
Cheney, D. L. & Seyfarth, R. M. (1990). How Monkeys See the World: Inside the Mind of Another Species. Chicago: University of Chicago Press.Google Scholar
Cheney, D. L., Seyfarth, R. M. & Silk, J. B. (1995). The role of grunts in reconciling opponents and facilitating interactions among adult female baboons. Animal Behaviour, 50, 249–57.Google Scholar
Cheng, M.-F. (1986). Female cooing promotes ovarian development in ring doves. Physiology and Behavior, 37, 371–4.Google Scholar
Cheng, M.-F. (1992). For whom does the female dove coo? A case for the role of vocal self-stimulation. Animal Behaviour, 43, 1035–44.Google Scholar
Cherry, C. (1957). On Human Communication: A Review, A Survey, and A Criticism. Cambridge: Technology Press of MIT.Google Scholar
Cherry, C. (1966). On Human Communication. Cambridge: MIT Press.Google Scholar
Chiver, I., Morton, E. S. & Stutchbury, B. J. M. (2006). Male blue-headed vireos delay territorial defense while on the nest incubating. Animal Behaviour, 73, 143–8.Google Scholar
Chiver, I., Stutchbury, B. J. M. & Morton, E. S. (2008). Do male plumage and song characteristics influence female off-territory forays and paternity in the hooded warbler? Behavioral Ecology and Sociobiology, 62, 1981–90.Google Scholar
Christy, J. G. (1988). Pillar function in the fiddler crab Uca beebi: 1. Competitive courtship signalling. Ethology, 78, 113–28.Google Scholar
Clayton, N. S. (1994). The influence of social interactions on the development of song and sexual preferences in birds. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. & Bolhuis, J. J., pp. 98115. Cambridge: Cambridge University Press.Google Scholar
Clutton-Brock, T. H. & Albon, S. D. (1979). The roaring of red deer and the evolution of honest advertisement. Behaviour, 69, 145–70.Google Scholar
Clutton-Brock, T. H., Guinness, F. E. & Albon, S. D. (1982). Red Deer: Behavior and Ecology of Two Sexes. Chicago: University of Chicago Press.Google Scholar
Coe, C. L. (1990). Psychobiology of maternal behavior in nonhuman primates. In Mammalian Parenting: Biochemical, Neurobiological, and Behavioral Determinants, ed. Krasnegor, N. A. & Bridges, R. S., pp. 157–83. New York: Oxford University Press.Google Scholar
Cohen, G. (1990). Data-driven and conceptually-driven processing. In The Blackwell Dictionary of Cognitive Psychology, ed. Eysenck, M. W., pp. 88–9. Oxford: Basil Blackwell.Google Scholar
Collias, N. E. (1963). A spectrographic analysis of the vocal repertoire of the African village weaverbird. Condor, 65, 517–27.Google Scholar
Collins, S. A. (2000). Men’s voices and women’s choices. Animal Behaviour, 60, 773–80. doi:10.1006/anbe.2000.1523.Google Scholar
Compton, L. A., Clarke, J. A., Seidensticker, J. & Ingrisano, D. R. (2001). Acoustic cues of white-nosed coati vocalizations: a test of motivation-structural rules. Journal of Mammalogy, 82, 1054–8.Google Scholar
Cosens, S. E. & Falls, J. B. (1984a). Structure and use of song in the yellow-headed blackbird (Xanthocephalus xanthocephalus). Zeitschrift für Tierpsychologie, 66, 227–41.Google Scholar
Cosens, S. E. & Falls, J. B. (1984b). A comparison of sound propagation and song frequency in temperate marsh and grassland habitats. Behavioral Ecology and Sociobiology, 15, 161–70.Google Scholar
Cosmides, L. & Tooby, J. (1994). Beyond intuition and instinct blindness: toward an evolutionary rigorous cognitive science. Cognition, 50, 4177.Google Scholar
Coss, R. G. (1991). Evolutionary persistence of memory-like processes. Concepts in Neuroscience, 2, 129–68.Google Scholar
Coss, R. G., Guse, K. L., Poran, N. S. & Smith, D. G. (1993). Development of antisnake defenses in California ground squirrels (Spermophilus beecheyi): II. Microevolutionary effects of relaxed selection from rattlesnakes. Behaviour, 124, 137–64.Google Scholar
Coss, R. G. & Owings, D. H. (1985). Restraints on ground squirrel antipredator behavior: Adjustments over multiple time scales. In Issues in the Ecological Study of Learning, ed. Johnston, T. D. & Pietrewicz, A. T., pp. 167200. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Coulter, K. S. (2009). The effects of phonetic symbolism on comparative price perceptions. Advances in Consumer Research, 36, 986–7.Google Scholar
Craig, W. (1918). Appetities and aversions as constituents of instinct. Biological Bulletin, 34, 91107.Google Scholar
Cronin, H. (1991). The Ant and the Peacock: Altruism and Sexual Selection from Darwin to Today. Cambridge: Cambridge University Press.Google Scholar
Curio, E., Ernst, U. & Vieth, W. (1978). Cultural transmission of enemy recognition: One function of mobbing. Science, 202, 899901.Google Scholar
Currie, P. J. & Sarjeant, W. A. S. (1979). Lower Cretaceous dinosaur footprint from the Peace River Canyon, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 28, 103–15.Google Scholar
Dabelsteen, T. & Pedersen, S. B. (1990). Song and information about aggressive responses of blackbirds, Turdus merula: evidence from interactive playback experiments with territory owners. Animal Behaviour, 40, 1158–68.Google Scholar
Dale, S. & Slagsvold, T. (1994). Polygyny and deception in the pied flycatcher: can females determine male mating status? Animal Behaviour, 48, 1207–17.Google Scholar
Darwin, C. (1871/1981). The Descent of Man, and Selection in Relation to Sex. Princeton: Princeton University Press.Google Scholar
Darwin, C. (1872/1965). The Expression of the Emotions in Man and Animals. Chicago: University of Chicago Press.Google Scholar
Davidar, P. & Morton, E. S. (1993). Living with parasites: Prevalence and effects of a blood parasite on survivorship in the Purple Martin. Auk, 110, 109–16.Google Scholar
Davies, N. B. (2000). Cuckoos, Cowbirds and Other Cheats. London: T & A. D. Poyser.Google Scholar
Davies, N. B. & Halliday, T. R. (1978). Deep croaks and fighting assessment in toads, Bufo bufo. Nature, 274, 683–5.Google Scholar
Davila-Ross, M., Owren, M. J. & Zimmermann, E. (2009). Reconstructing the evolution of laughter in great apes and humans. Current Biology, 19, 1006–11.Google Scholar
Davis, M. (1982). Interaction Rhythms: Periodicity in Communicative Behavior. New York: Human Sciences Press.Google Scholar
Dawkins, R. (1976). The Selfish Gene. Oxford: Oxford University Press.Google Scholar
Dawkins, R. & Krebs, J. R. (1978). Animal signals: Information or manipulation? In Behavioural Ecology: An Evolutionary Approach, ed. Krebs, J. R. & Davies, N. B., pp. 282309. Sunderland: Sinauer Associates.Google Scholar
Dawkins, R. & Krebs, J. R. (1979). Arms races between and within species. Proceedings of the Royal Society of London, Series B, 205, 489511.Google Scholar
Deacon, T. W. (1997) Symbolic Species: The Co-Evolution of Language and the Brain. New York and London: Norton.Google Scholar
Decoursey, P. (1961). Effect of light on the circadian activity rhythm of the flying squirrel Glaucomys volans. Zeitschrift für Vergleichende Physiologie, 44, 331–54.Google Scholar
Dennett, D. C. (1983). Intentional systems in cognitive ethology: The Tanglossian paradigm’ defended. Behavioral and Brain Sciences, 6, 343–90.Google Scholar
DeWolfe, B. B., Baptista, L. F. & Petrinovich, L. (1989). Song development and territory establishment in Nuttall’s White-crowned Sparrows. Condor, 91, 397407.Google Scholar
Dewsbury, D. A. (1992). On the problems studied in ethology, comparative psychology, and animal behavior. Ethology, 92, 89107.Google Scholar
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91, 176–80.Google Scholar
Dingle, H. (1969). A statistical and information analysis of aggressive communication in the mantis shrimp Gonodactylus bredini Manning (Crustacea: Stomatopoda). Animal Behaviour, 17, 561–75.Google Scholar
Dixson, A. F. (1980). Androgens and aggressive behavior in primates: A review. Aggressive Behavior, 6, 3767.Google Scholar
Dooling, R. J. (1982). Auditory perception in birds. In Acoustic Communication in Birds, 1, ed. Kroodsma, D. E. & Miller, E. H., pp. 95130. New York: Academic Press.Google Scholar
Dooling, R. J., Leek, M. R., Gleich, O. & Dent, M. L. (2002). Auditory temporal resolution in birds: discrimination of harmonic complexes. Journal of the Acoustical Society of America, 112, 748–59.Google Scholar
Drahota, A., Costall, A. & Reddy, V. (2008). The vocal communication of different types of smile. Speech Communication, 50, 278–87.Google Scholar
Driver, P. M. & Humphries, D. A. (1969). The significance of the high-intensity alarm call in captured passerines. Ibis, 111, 243–4.Google Scholar
Ducheminsky, N., Henzi, S. P. & Barrett, L. (2014). Responses of vervet monkeys in large troops to terrestrial and aerial predator alarm calls. Behavioral Ecology, 25, 1474–84.Google Scholar
Duchenne de Boulogne, G.-B. (1862). The Mechanisms of Human Facial Expression. Paris: Jules Reynard.Google Scholar
Duellman, W. E. & Pyles, R. A. (1983). Acoustic resource partitioning in anuran communities. Copeia, 639–49.Google Scholar
Dunlap, R.A. (2016). The effect of vessel noise on humpback whale, Megatera novaeanglia. Animal Behaviour, 111, 1321.Google Scholar
Dunlap, R. A., Cato, D. H. & Noad, M. J. (2014). Evidence of a Lombard response in migrating humpback whales (Megaptera novaranglia). Journal of the Acoustical Society of America, 136, 430–7.Google Scholar
Dyer, F. C. (1994). Spatial cognition and navigation in insects. In Behavioral Mechanisms in Evolutionary Ecology, ed. Real, L. A., pp. 6698. Chicago: University of Chicago Press.Google Scholar
Ekman, P. (1992). Facial expressions of emotion: an old controversy and new findings. Philosophical Transactions of the Royal Society of London B, 335, 63–9.Google Scholar
Ekman, P. (2001). Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage. New York: W. W. Norton & Company.Google Scholar
Ekman, P. & Friesen, W. V. (1982). Felt, false, and miserable smiles. Journal of Nonverbal Behavior, 6, 238–52.Google Scholar
Ekman, P. & Friesen, W. V. (1988). Smiles when lying. Journal of Personal Social Psychology, 54, 414–20.Google Scholar
Elfenbein, H. A., Sorenson, E. R. & Friesen, W. V. (2002). On the universality and cultural specificity of emotion recognition: a meta-analysis. Psychological Bulletin, 128, 203–35.Google Scholar
Elowson, A. M., Tannenbaum, P. L. & Snowdon, C. T. (1991). Food-associated calls correlate with food preferences in cotton-top tamarins. Animal Behaviour, 42, 931–7.Google Scholar
Emlen, S. T., Wrege, P. H. & Demong, N. J. (1995). Making decisions in the family: an evolutionary perspective. American Scientist, 83, 148–57.Google Scholar
Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. American Naturalist, 139, S125–53.Google Scholar
Enquist, M. (1985). Communication during aggressive interactions with particular reference to variation in choice of behaviour. Animal Behaviour, 33, 1152–61.Google Scholar
Evans, C. (1997). Referential signals. In Communication. Perspectives in Ethology, 12, ed. Owings, D. H., Beecher, M. D. & Thompson, . New York: Plenum Press.Google Scholar
Evans, R. M. (1990a). Embryonic fine tuning of pipped egg temperature in the American white pelican. Animal Behaviour, 40, 963–8.Google Scholar
Evans, R. M. (1990b). Vocal regulation of temperature by avian embryos: a laboratory study with pipped eggs of the American white pelican. Animal Behaviour, 40, 969–79.Google Scholar
Evans, R. M. (1992). Embryonic and neonatal vocal elicitation of parental brooding and feeding responses in American white pelicans. Animal Behaviour, 44, 667–75.Google Scholar
Evans, R. M. (1994). Cold-induced calling and shivering in young American white pelicans: honest signalling of offspring need for warmth in a functionally integrated thermoregulatory system. Behaviour, 129, 1334.Google Scholar
Ey, E. & Fischer, J. (2009). The “acoustic adaptation hypothesis” – a review of the evidence from birds, anurans and mammals. Bioacoustics, 19, 2148. doi:10.1080/09524622.2009.9753613Google Scholar
Falk, D. (2004). Prelinguistic evolution in early hominins: whence motherese? Behavior and Brain Sciences, 27, 481503.Google Scholar
Fanselow, M. S. (1989). The adaptive function of conditioned defensive behavior: An ecological approach to Pavlovian stimulus-substitution theory. In Ethoexperimental Approaches to the Study of Behavior. NATO Advanced Science Institutes Series. Series D: Behavioural and Social Sciences, 48, ed. Blanchard, R. J., Brain, P. F., Blanchard, D. C. & Parmigiani, S., pp. 151–66. Dordrecht, Netherlands: Kluwer Academic Publishers.Google Scholar
Fanselow, M. S. (1991). Analgesia as a response to aversive Pavlovian conditional stimuli: cognitive and emotional mediators. In Fear, Avoidance and Phobias: a Fundamental Analysis, ed. Denny, M. R., pp. 6186. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Faragó, T., Pongrácz, P. Miklosi, Á., Huber, L. & Virányi, Z. (2010). Dogs expectation about signaler’s body size by virtue of their growls. PLOS one, doi.org/10.1371/journal.pone.0015175.Google Scholar
Fernald, A. (1992). Human maternal vocalizations to infants as biologically relevant signals: An evolutionary perspective. In The Adapted Mind: Evolutionary Psychology and the Generation of Culture, ed. Barkow, J. H., Cosmides, L. & Tooby, J., pp. 345–82. Oxford: Oxford University Press.Google Scholar
Ficken, M. S., Ficken, R. W. & Witkin, S. R. (1978). Vocal repertoire of the Black-capped Chickadee. Auk, 95, 3448.Google Scholar
Ficken, R. W., Ficken, M. S. & Hailman, J. P. (1974). Temporal pattern shifts to avoid acoustic interference in singing birds. Science, 183, 762–3.Google Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press.Google Scholar
Fitch, H. S. (1949). Study of snake populations in central California. American Midland Naturalist, 41, 513–79.Google Scholar
Fleischman, L. (1992). The influence of the sensory system and the environment on motion patterns in the visual displays of anoline lizards and other vertebrates. American Naturalist, 139, S36–S61.Google Scholar
Fletcher, H. & Munson, W. A. (1937). Relation between loudness and masking. Journal of the Acoustical Society of America, 9, 110.Google Scholar
Fogassi, L., Ferrari, PF., Gesierich, B., Rozzi, S., Chersi, F., Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308, 662–7.Google Scholar
Folger, T. (1993). The blood of the dinos. Discover, 14, 99.Google Scholar
Frazer, G., Sissom, D., Rice, D. & Peters, G. (1991). How cats purr. Journal of the Zoological Society of London, 223, 6778.Google Scholar
Freeberg, T. M. (2008). Complexity in the chick-a-dee call of Carolina chickadees (Poecile carolinensis): associations of context and signaler behavior to call structure. The Auk, 125, 896907.Google Scholar
Fricke, H. C. & Rogers, R. R. (2000). Multiple taxon-multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs. Geology, 28, 799802.Google Scholar
Fridlund, A. J. (1994). Human Facial Expression: An Evolutionary View. San Diego: Academic Press.Google Scholar
Frings, H, Frings, M., Cox, B. & Peirsner, L. (1955). Auditory and visual mechanisms in food-finding behavior of the herring gull. The Wilson Bulletin, 67, 155–70.Google Scholar
Fry, W. F. (1994). The biology of humor. HUMOR, International Journal of Humor Research, 7, 111–26.Google Scholar
Galef, B. G. (1981). The ecology of weaning: Parasitism and the achievement of independence by altricial mammals. In Parental Care in Mammals, ed. Gubernick, D. J. & Klopfer, P. H., pp. 211–41. New York: Plenum Press.Google Scholar
Galef, B. G. & Wigmore, S. W. (1983). Transfer of information concerning distant foods: A laboratory investigation of the “information-centre” hypothesis. Animal Behaviour, 31, 748–58.Google Scholar
Gallese, V., Fadiga, L., Fogassi, L., Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593609.Google Scholar
Garner, R. L. (1892). The Speech of Monkeys. New York: Charles L. Webster.Google Scholar
Geist, V. (1966). The evolution of horn-like organs. Behaviour, 27, 175214.Google Scholar
Geist, V. (1974). On fighting strategies in animal combat. Nature, 250, 354.Google Scholar
Gerhardt, H. C. (1987). Evolutionary and neurobiological implications of selective phonotaxis in the green treefrog, Hyla cinerea. Animal Behaviour, 35, 1479–89.Google Scholar
Getty, T. (1996). Mate selection by repeated inspection: more on pied flycatchers. Animal Behaviour, 51, 739–45.Google Scholar
Gil, M. & De Marco, R. J. (2010). Decoding the information in the honeybee dance: revisiting the tactile hypothesis. Animal Behaviour, 80, 887–94.Google Scholar
Gil, D, Honarmand, M., Pascual, J., Perez-Mena, E. & Macias Garcia, C. (2015). Birds living near airports advance their dawn chorus and reduce overlap. Behavioral Ecology, 26, 435–43.Google Scholar
Gill, S.A., Job, J. R., Myers, K., Naghshineh, K. & Vonhof, M. (2014). Toward a broader characterization of anthropogenic noise and its effects on wildlife. Behavioral Ecology, doi:10.1093/beheco/aru219.Google Scholar
Gingras, B., Boeckle, M., Herbst, C. T. & Fitch, W. T. (2013). Call acoustics reflect body size across four clades of anurans. Journal of Zoology, 289, 143–50.Google Scholar
Gish, S. L. & Morton, E. S. (1981). Structural adaptations to local habitat acoustics in Carolina wren songs. Zeitschrift für Tierpsychologie, 56, 7484.Google Scholar
Godard, R. (1991). Long-term memory of individual neighbours in a migratory songbird. Nature, 350, 228–9.Google Scholar
Gompertz, T. (1967). The hiss-display of the great tit. Vogelwelt, 88, 165–9.Google Scholar
Gottlander, K. (1987). Variation in the song rate of the male pied flycatcher (Ficedula hypoleuca): causes and consequences. Animal Behavior, 35, 1037–43.Google Scholar
Gottlieb, G. (1993). Social induction of malleability in ducklings: Sensory basis and psychological mechanism. Animal Behaviour, 45, 707–19.Google Scholar
Gould, J. L. (1975). Honey bee recruitment: the dance language controversy. Science, 189, 685–93.Google Scholar
Gould, J. L. (2004). Animal cognition. Current Biology, 14, R373-R375.Google Scholar
Gould, J. L. & Marler, P. (1987). Learning by Instinct. Scientific American, 256, 7485.Google Scholar
Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge: The Belknap Press of Harvard University Press.Google Scholar
Gouzoules, H. & Gouzoules, S. (1989). Design features and developmental modification of pigtail macaque, Macaca nemestrina, agonistic screams. Animal Behaviour, 37, 383401.Google Scholar
Gouzoules, S., Gouzoules, H. & Marler, P. (1984). Rhesus monkey (Macaca mulatto) screams: representational signalling in the recruitment of agonistic aid. Animal Behaviour, 32, 182–93.Google Scholar
Green, S. & Marler, P. (1979). The analysis of animal communication. In Social Behavior and Communication. Handbook of Behavioral Neurobiology, 3, ed. Marler, P. & Vandenbergh, J. G., pp. 73158. New York: Plenum Press.Google Scholar
Greene, H. W. (1988). Antipredator mechanisms in reptiles. In Biology of the Reptilia: Defense and Life History. Biology of the Reptilia, 16, ed. Gans, C. & Huey, R. B., pp. 1152. New York: Alan R. Liss.Google Scholar
Greenewalt, C. H. (1968). Bird Song: Acoustics and Physiology. Washington: Smithsonian.Google Scholar
Greenfield, M. D. (1994). Cooperation and conflict in the evolution of signal interactions. Annual Review of Ecology and Systematics, 25, 97126.Google Scholar
Greenwood, D. D. (1961). Auditory masking and the critical band. Journal of the Acoustical Society of America, 33, 484–92.Google Scholar
Greig-Smith, P. W. (1980). Parental investment in nest defence by stonechats (Saxicola torquata). Animal Behaviour, 28, 604–19.Google Scholar
Griffin, D. R. (1981). The Question of Animal Awareness. New York: The Rockefeller Press.Google Scholar
Griggio, G., Matessi, G. & Pilastro, A. (2004). Should I stay or should I go? Female brood desertion and male counterstrategy in rock sparrows. Behavioral Ecology, 16, 435–41.Google Scholar
Grinnell, J. & McComb, K. (1996). Maternal grouping as a defense against infanticide by males: evidence from field playback experiments on African lions. Behavioral Ecology, 7, 55–9.Google Scholar
Guilford, T. & Dawkins, M. S. (1991). Receiver psychology and the evolution of animal signals. Animal Behaviour, 42, 114.Google Scholar
Guilford, T. & Dawkins, M. S. (1992). Understanding signal design: a reply to Blumberg & Alberts. Animal Behaviour, 44, 384–5.Google Scholar
Guilford, T. & Dawkins, M. S. (1993). Are warning colors handicaps? Evolution, 47, 400–16.Google Scholar
Gustafson, G. E. & Green, J. A. (1989). On the importance of fundamental frequency and other acoustic features in cry perception and infant development. Child Development, 60, 772–80.Google Scholar
Gustafson, G. E. & Green, J. A. (1991). Developmental coordination of cry sounds with visual regard and gestures. Infant Behavior and Development, 14, 51–7.Google Scholar
Haggerty, T. M. & Morton, E. S. (1995). No. 188: Carolina wren (Thryothorus ludovicianus). In The Birds of North America, ed. Poole, A. & Gill, F.. Washington: The American Ornithologists’ Union; Philadelphia: The Academy of Natural Sciences.Google Scholar
Hailman, J. P. (1977). Optical Signals. Bloomington: Indiana University Press.Google Scholar
Hall, M. L. (2009). A review of duetting in birds. Advances in the Study of Behavior, 40, 67121.Google Scholar
Hamilton, W. D. (1964). The genetical evolution of social behaviour, I & II. Journal of Theoretical Biology, 1, 152.Google Scholar
Hamilton, W. J. I. & McNutt, J. W. (1997). Determinants of conflict behavior. In Communication. Perspectives in Ethology, 12, ed. Owings, D. H., Beecher, M. D. & Thompson, N. S.. New York: Plenum Press.Google Scholar
Hansen, A. J. (1986). Fighting behavior in bald eagles: A test of game theory. Ecology, 67, 787–97.Google Scholar
Hansen, P. (1979). Vocal learning: its role in adapting sound structures to longdistance propagation, and a hypothesis on its evolution. Animal Behaviour, 27, 1270–1.Google Scholar
Hanson, M. (1995). The Development of the California Ground Squirrels’ Mammalian and Avian Antipredator Behavior. PhD, University of California, Davis.Google Scholar
Harper, D. G. C. (1991). Communication. In Behavioural Ecology: An Evolutionary Approach, ed. Krebs, J. R. & Davies, N. B., pp. 374–97. Oxford: Blackwell Scientific Publications.Google Scholar
Harrington, F. H. (1987). Aggressive howling in wolves. Animal Behaviour, 35, 712.Google Scholar
Hart, P. J., Hall, R., Ray, W., Beck, A. & Zook, J. (2015). Cicadas impact bird communication in a noisy tropical rainforest. Behavior Ecology, 26, 839–42.Google Scholar
Hatfield, E., Cacioppo, J. T. & Rapson, R. L. (1994). Emotional Contagion. New York: Cambridge University Press.Google Scholar
Hauser, M. D. (1991). Sources of acoustic variation in rhesus macaque (Macaca mulattta) vocalizations. Ethology, 89, 2946.Google Scholar
Hauser, M. D. (1996). The Evolution of Communication. Cambridge: MIT Press.Google Scholar
Hauser, M. D. & Marler, P. (1993a). Food-associated calls in rhesus macaques (Macaca mulattao): I. Socioecological factors. Behavioral Ecology, 4, 194205.Google Scholar
Hauser, M. D. & Marler, P. (1993b). Food-associated calls in rhesus macaques(Macaca mulatta): II. Costs and benefits of call production and suppression. Behavioral Ecology, 4, 206–12.Google Scholar
Hauser, M. D. & Nelson, D. A. (1991).“Intentional” signaling in animal communication. Trends in Ecology and Evolution, 6, 186–9.Google Scholar
Heinroth, O. (1911/1985). Contributions to the biology, especially the ethology and psychology of the Anatidae (English translation). In Foundations of Comparative Ethology, ed. Burghardt, G. M., pp. 246301. New York: Van Nostrand Reinhold.Google Scholar
Helfer, B. & Osiejuk, T. S. (2015).It takes all kinds in acoustic communication: a new perspective on the song overlapping phenomenon. Ethology, 121, 315–26.Google Scholar
Hennessy, D. F. & Owings, D. H. (1988). Rattlesnakes create a context for localizing their search for potential prey. Ethology, 77, 317–29.Google Scholar
Hennessy, D. F., Owings, D. H., Rowe, M. P., Coss, R. G. & Leger, D. W. (1981). The information afforded by a variable signal: Constraints on snake-elicited tail flagging by California ground squirrels. Behaviour, 78, 188226.Google Scholar
Herndon, J. G., Turner, J. J. & Collins, D. C. (1981). Ejaculation is important for mating-induced testosterone increases in male rhesus monkeys. Physiology and Behavior, 27, 873–7.Google Scholar
Hersek, M. J. (1990). Behavior of predator and prey in a highly coevolved system: Northern Pacific rattlesnakes and California ground squirrels. PhD, University of California, Davis.Google Scholar
Hersek, M. J. & Owings, D. H. (1993). Tail flagging by adult California ground squirrels: a tonic signal that serves different functions for males and females. Animal Behaviour, 46, 129–38.Google Scholar
Hersek, M. J. & Owings, D. H. (1994). Tail flagging by young California ground squirrels, Spermophilus beecheyi: age-specific participation in a tonic communicative system. Animal Behaviour, 48, 803–11.Google Scholar
Hinde, R. A. (1981). Animal signals: ethological and games-theory approaches are not incompatible. Animal Behaviour, 29, 535–42.Google Scholar
Hinde, R. A. (1985). Was “The expression of the emotions” a misleading phrase? Animal Behaviour, 33, 985–92.Google Scholar
Hodl, W. (1977). Call differences and calling site segregation in anuran species from Central Amazonian floating meadows. Oecologia, 28, 351–63.Google Scholar
Hofer, M. A. (1987). Early social relationships: a psychobiologist’s view. Child Development, 58, 633–7.Google Scholar
Hofer, M. A., Brunelli, S. A. & Shair, H. N. (1993). Ultrasonic vocalization responses of rat pups to acute separation and contact comfort do not depend on maternal thermal cues. Developmental Psychobiology, 26, 8195.Google Scholar
Hofer, M. A., Brunelli, S. A. & Shair, H. N. (1994). Potentiation of isolation-induced vocalization by brief exposure of rat pups to maternal cues. Developmental Psychobiology, 27, 503–17.Google Scholar
Hoffman, M. L. (1978). Toward a theory of empathie arousal and development. In The Development of Affect, ed. Lewis, M. & Rosenblum, L. A., pp. 227–56. New York: Plenum Press.Google Scholar
Hogstedt, G. (1983). Adaptation unto death: function of fear screams. American Naturalist, 121, 562–70.Google Scholar
Hoi-Leitner, M., Nechtelberger, H. & Hoi, H. (1995). Song rate as a signal for nest site quality in blackcaps (Sylvia atricapilla). Behavioral Ecology and Sociobiology, 37, 399405.Google Scholar
Holekamp, K. E. & Sherman, P. W. (1989). Why male ground squirrels disperse. American Scientist, 11, 232–9.Google Scholar
Hollén, L. I. & Manser, M. B. (2007). Motivation before meaning: motivational information encoded in meerkat alarm calls develops earlier than referential information. American Naturalist, 169, 758–67.Google Scholar
Hollén, L. I. & Radford, A. N. (2009). The development of alarm call behavior in mammals and birds. Animal Behaviour, 78, 791800.Google Scholar
Hollis, K. L. (1984). The biological function of Pavlovian conditioning: The best defense is a good offense. Journal of Experimental Psychology: Animal Behavior Processes, 10, 413–25.Google Scholar
Hollis, K. L. (1990). The role of Pavlovian conditioning in territorial aggression and reproduction. In Contemporary Issues in Comparative Psychology, ed. Dewsbury, D. A., pp. 197219. Sunderland: Sinauer Associates.Google Scholar
Holzer, B., Jacat, A. & Brinkoff, M. W. G. (2003). Conditon-dependent signaling affects male sexual attractiveness in field crickets, Gryllus campestris. Behavioral Ecology, 14, 353–9.Google Scholar
Hoogland, J. L. (1983). Nepotism and alarm calling in the black-tailed prairie dog (Cynomys ludovicianus). Animal Behaviour, 31, 472–9.Google Scholar
Hopkins, C. D. (1983). Sensory mechanisms in animal communication. In Animal Behaviour, Vol. 2, Communication, ed. Halliday, T. R. & Slater, P. J. B., pp. 114–55. San Francisco: W. B. Freeman.Google Scholar
Hopp, S. L. & Morton, E. S. (1998). Sound playback studies. In Animal Acoustic Communication: Sound Analysis and Research Methods, ed. Hopp, S. L., Owren, M. J. & Evans, C. S., pp. 323–52. Heidelberg: Springer-Verlag.Google Scholar
Hopson, J. A. (1975). The evolution of cranial display structures in hadrosaurian dinosaurs. Paleobiology, 1, 2143.Google Scholar
Hopson, J. A. (1977). Relative brain size and behavior in archosaurian reptiles. Annual Review of Ecology and Systematics, 8, 429–48.Google Scholar
Horisk, C. & Crocroft, R. B. (2013). Animal signals: always influence, sometimes information. In Animal Communication Theory, Information and Influence, ed. Stegmann, U., pp. 259–80. Cambridge: Cambridge University Press.Google Scholar
Horn, A. G. (1997). Speech acts and animal signals. In Communication. Perspectives in Ethology, 12, ed. Owings, D. H., Beecher, M. D. & Thompson, N. S.. New York: Plenum Press.Google Scholar
Horn, A. G. & McGregor, P. M. (2013). Influence and information in communication networks. In Animal Communication Theory, Information and Influence, ed. Stegmann, U., pp. 4362. Cambridge: Cambridge University Press.Google Scholar
Horner, J. R. & Makela, R. (1979). Nest of juveniles provides evidence of family structure among dinosaurs. Nature, 28, 296–8.Google Scholar
Hughes, M. K., Hughes, A. L. & Covalt-Dunning, D. (1982). Stimuli eliciting foodcalling in domestic chickens. Applied Animal Ethology, 8, 543–50.Google Scholar
Humphrey, N. K. (1976). The social function of intellect. In Growing Points in Ethology, ed. Bateson, P. P. G. & Hinde, R. A., pp. 303–18. Cambridge: Cambridge University Press.Google Scholar
Hunter, P. G. & Schellenberg, E. G. (2010). Music and emotion. In Music Perception, ed. Jones, M. R., Fay, R. R. & Popper, A. N., pp. 129–64. New York: Springer.Google Scholar
Huron, D. (2015). Affect induction through musical sounds: an ethological perspective. Philosophical Transactions of the Royal Society B, 370, 122–8.doi:10.1098/rstb.2014.0098.Google Scholar
Huxley, J. (1923). Courtship activities in the red-throated diver (Colymbus stellatus Pontopp.); together with a discussion of the evolution of courtship in birds. Journal of the Linnean Society of London, 53, 253–92.Google Scholar
Huxley, J. S. (1938). The present standing of the theory of sexual selection. In Evolution: Essays on Aspects of Evolutionary Biology Presented to Professor E.S. Goodrich on his Seventieth Birthday, ed. deBeer, G.R., pp. 1142. Oxford: Clarendon Press.Google Scholar
Immelmann, K. (1969). On the effect of early experience upon sexual object fixation in estrildine finches. Zeitschrift für Tierpsychologie, 26, 677–91.Google Scholar
Insley, S. J. (1996). Studies of Mother–Offspring Vocal Recognition in the Northern Fur Seal. PhD, University of California, Davis.Google Scholar
Ivanitski, V. V., Antipov, V. A. & Morova, I. M. (2015). The thrush nightingale (Luscinia luscinia) in Moscow and Moscow suburbs: city noise influences the frequency parameters of its song. Biological Bulletin, 42, 724–7.Google Scholar
Johnston, R. F., Niles, D. M. & Rohwer, S. A. (1972). Hermon Bumpus and natural selection on the house sparrow, Passer domesticus. Evolution, 26, 2031.Google Scholar
Jürgens, U. (1979). Vocalizations as an emotional indicator, a neuroethological study in the squirrel monkey. Behaviour, 69, 88117.Google Scholar
Juslin, P. N. & Laukka, P. (2003). Communication of emotion in vocal expression and music performance: different channels same code? Psychological Bulletin, 129, 770814.Google Scholar
Juslin, P. N. & Laukka, P. (2004) Expression, perception, and induction of musical emotions: A review and a questionnaire study of everyday listening, Journal of New Music Research, 33, 217–38.Google Scholar
Kamil, A. C. (1994). A synthetic approach to the study of animal intelligence. In Behavioral Mechanisms in Evolutionary Ecology, ed. Real, L. A., pp. 1145. Chicago: University of Chicago Press.Google Scholar
Kaneyuki, H., Yokoo, H., Tsuda, A., Yoshida, M., Mizuki, Y., Yamada, M. & Tanaka, M. (1991). Psychological stress increases dopamine turnover selectively in mesoprefrontal dopamine neurons of rats: reversal by diazepam. Brain Research, 557, 154–61.Google Scholar
Karakashian, S. J., Gyger, M. & Marler, P. (1988). Audience effects on alarm calling in chickens (Gallus gallus). Journal of Comparative Psychology, 102, 129–35.Google Scholar
Kardong, K. V. (1986). Predatory strike behavior of the rattlesnake, Crotalus viridis oreganus. Journal of Comparative Psychology, 100, 304314.Google Scholar
Keverne, E. B., Martensz, N. D. & Tuite, B. (1989). Beta-endorphin concentrations in cerebrospinal fluid of monkeys are influenced by grooming relationships. Psychoneuroendocrinology, 14, 155–61.Google Scholar
King, J. A. (1955). Social behavior, social organization, and population dynamics in a black-tailed prairiedog town in the Black Hills of South Dakota. Contributions from the Laboratory of Vertebrate Biology, University of Michigan, 67, 1123.Google Scholar
Klauber, L. M. (1940). A statistical study of the rattlesnakes. VII. The rattle, Part 1. Occasional Papers of the San Diego Society for Natural History, 6, 162.Google Scholar
Klink, R. (2000). Creating brand names with meaning, the use of sound symbolism. Marketing Letters, 11, 520.Google Scholar
Klinnert, M. D., Campos, J. J., Sorce, J. F., Emde, R. N. & Svejda, M. (1983). Emotions as behavior regulators: Social referencing in infancy. In The Emotion. Emotion in Early Development, 2, ed. Plutchik, R. & Kellerman, H., pp. 5786. New York: Academic Press.Google Scholar
Klump, G. (1996). Bird communication in the noisy world. In Ecology and Evolution of Acoustic Communication in Birds, ed. Kroodsma, D. E. & Miller, E. H., pp. 321–38. Ithaca: Cornell University Press.Google Scholar
Klump, G. M., Kretzschmar, E. & Curio, E. (1986). The hearing of an avian predator and its avian prey. Behavioral Ecology and Sociobiology, 18, 317–23.Google Scholar
Kodric-Brown, A. & Brown, J. H. (1984). Truth in advertising: the kinds of traits favored by sexual selection. American Naturalist, 124, 309–23.Google Scholar
Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L.,Gallese, V. & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297, 846–8.Google Scholar
Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Zeitschrift für Tierpsychologie, 22, 770–83.Google Scholar
Konishi, M. (1969). Time resolution by single auditory neurones in birds. Nature, 222, 566–7.Google Scholar
Konoka, V., Nagy, K. & Miklosí, A. (2015). How do humans represent the emotions of dogs? The resemblance between the human representation of the canine and the human affective space. Applied Animal Behaviour, 162, 3746. doi:10.1016/j.appl anim.2014.11.003.Google Scholar
Kraemer, G. W. (1992). A psychobiological theory of attachment. Behavioral and Brain Sciences, 15, 493541.Google Scholar
Krebs, J. R., Ashcroft, R. & Orsdol, K. V. (1981). Song matching in the great tit, Parus major. Animal Behaviour, 29, 919–23.Google Scholar
Krebs, J. R. & Dawkins, R. (1984). Animal signals: Mind reading and manipulation. In Behavioural Ecology: An Evolutionary Appraoch, ed. Krebs, J. R. & Davies, N. B., pp. 380402. Sunderland: Sinauer Associates.Google Scholar
Kroodsma, D. E. (1984). Songs of the alder flycatcher (Empidonax alnorum) and willow flycatcher (Empidonax traillii) are innate. Auk, 101, 1324.Google Scholar
Kroodsma, D. E. (1985). Development and use of two song forms by the eastern phoebe. Wilson Bulletin, 97, 21–9.Google Scholar
Kroodsma, D. E. (1989). Male eastern phoebes (Sayornis phoebe; Tyrannidae, Passeriformes) fail to imitate songs. Journal of Comparative Psychology, 103, 227–32.Google Scholar
Kroodsma, D. E. & Baylis, J. R. (1982). Appendix: a world survey of evidence for vocal learning in birds. In Acoustic Communication in Birds, 2, ed. Kroodsma, D. E. & Miller, E. H., pp. 311–37. New York: Academic Press.Google Scholar
Kroodsma, D. E. & Canady, R. A. (1985). Differences in repertoire size, singing behavior, and associated neuroanatomy among Marsh Wren populations have a genetic basis. Auk, 102, 439–46.Google Scholar
Kroodsma, D. E., Hamilton, D., Sánchez, J. E., Byers, B. E., Fandiño-Mariño, H., Stemple, D. W., Trainer, J. M. & Powell, G. V. N. (2013). Behavioral evidence for song learning In the suboscine bellbirds (Procnias spp.; Cotingidae). The Wilson Journal of Ornithology, 125, 114.Google Scholar
Kroodsma, D.E. & Konishi, M. (1991). A suboscine bird (Sayornis phoebe) develops normal song without auditory feedback. Animal Behavior, 42, 477–87.Google Scholar
Kroodsma, D. E. & Verner, J. (1987). Use of song repertoires among marsh wren populations. Auk, 104, 6372.Google Scholar
Lande, R. (1981). Models of speciation by sexual selection on polygenic characters. Proceeding of the National Academy of Sciences, USA, 78, 3721–5.Google Scholar
Lauder, G. V. (1981). Form and function: structural analysis in evolutionary morphology. Paleobiology, 7, 430–42.Google Scholar
Lazarus, R. S. (1991). Emotion and Adaptation. New York: Oxford University Press.Google Scholar
Leger, D. W. (1993). Contextual sources of information and responses to animal communication signals. Psychological Bulletin, 113, 295304.Google Scholar
Leger, D. W. & Owings, D. H. (1978). Responses to alarm calls by California ground squirrels: Effects of call structure and maternal status. Behavioral Ecology and Sociobiology, 3, 177–86.Google Scholar
Lingle, S., Wyman, M. T., Kotrba, R., Teichroeb, L. J. & Romanow, C. A. (2012). What makes a cry a cry? A review of infant distress vocalizations. Current Zoology, 58, 698726.Google Scholar
Linhart, P. & Fuchs, R. (2015). Song pitch indicates body size and correlates with males’ response to playback in a songbird. Animal Behaviour, 103, 9198.Google Scholar
Loffredo, C. A. & Borgia, G. (1986). Sexual selection, mating systems, and the evolution of avian acoustical displays. American Naturalist, 128, 773–94.Google Scholar
Logue, D. M. (2007). How do they duet? Sexually dimorphic behavioural mechanisms structure duet songs in the black-bellied wren. Animal Behaviour, 73, 105–13.Google Scholar
Lơpez, P. & Martin, J. (2011). Male Iberian rock lizards may reduce the costs of fighting by scent matching of the resource holders. Behavioral Ecology and Socioiology, 65, 1891–8.Google Scholar
Lord, K., Feinstein, M. & Coppinger, R. (2009). Barking and mobbing. Behavioural Processes, 81, 358–68. doi:10.1016/j.beproc.2009.04.008.Google Scholar
Lorenz, K. (1970). Konrad Lorenz: Studies of Human and Animal Behaviour (English translation by R D Martin). Cambridge: Harvard University Press.Google Scholar
Loughry, W. J. & McDonough, C. M. (1988). Calling and vigilance in California ground squirrels: A test of the tonic communication hypothesis. Animal Behaviour, 36, 1533–40.Google Scholar
Macedonia, J. M. (1990). What is communicated in the antipredator calls of lemurs: Evidence from playback experiments with ringtailed and ruffed lemurs. Ethology, 86, 177–90.Google Scholar
Macedonia, J. M. & Evans, C. S. (1993). Variation among mammalian alarm call systems and the problem of meaning in animal signals. Ethology, 93, 177–97.Google Scholar
Magrath, R. D., Pitcher, B. J. & Gardner, J. L. (2007). A mutual understanding? Interspecific responses by birds to each other’s alarm calls. Behavioral Ecology, 18, 944–51.Google Scholar
Mainwaring, W. I. P., Haining, S. A. & Harper, B. (1988). The functions of testosterone and its metabolites. In Hormones and their Actions. 1, ed. Cooke, B. A., King, R. J. B. & van der Molen, H. J., pp. 169–96. Amsterdam: Elsevier Scientific Publications.Google Scholar
Margoliash, D. (1983). Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. Journal of Neuroscience, 3, 1039–57.Google Scholar
Margoliash, D. & Konishi, M. (1985). Auditory representation of autogenous song in the song system of white-crowned sparrows. Proceedings of the National Academy of Sciences USA, 82, 59976000.Google Scholar
Markl, H. (1985). Manipulation, modulation, information, cognition: Some of the riddles of communication. In Experimental Behavioral Ecology and Sociobiology, ed. Holldobler, B. & Lindauer, M., pp. 163–94. Sunderland: Sinauer Associates.Google Scholar
Marler, P. (1955). Characteristics of some animal calls. Nature, 176, 68.Google Scholar
Marler, P. (1956). The voice of the chaffinch and its function as language. Ibis, 98, 231–61.Google Scholar
Marler, P. (1959). Developments in the study of animal communication. In Darwin’s Biological Work, Some Aspects Reconsidered, ed. Bell, P. R., pp. 150206. New York: John Wiley & Sons.Google Scholar
Marler, P. (1961). The logical analysis of animal communication. Journal of Theoretical Biology, 1, 295317.Google Scholar
Marler, P. (1970). A comparative approach to vocal learning: Song development in white-crowned sparrows. Journal of Comparative and Physiological Psychology, 71, 125.Google Scholar
Marler, P. (1984). Animal communication: Affect or cognition? In Approaches to Emotion, ed. Scherer, K. R. & Ekman, P., pp. 345–65. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
Marler, P., Dufty, A. & Pickert, R. (1986). Vocal communication in the domestic chicken: I. Does a sender communicate information about the quality of a food referent to a receiver? Animal Behaviour, 34, 188–93.Google Scholar
Marler, P., Evans, C. S. & Häuser, M. D. (1992). Animal signals: motivational, referential, or both? In Nonverbal Vocal Communication: Comparative and Developmental Approaches, ed. Papousek, H., Jurgens, U. & Papousek, M., pp. 6686. Cambridge: Cambridge University Press.Google Scholar
Marler, P. & Hamilton, W. J. (1966). Mechanisms of Animal Behavior. New York: John Wiley.Google Scholar
Marler, P., Karakashian, S. & Gyger, M. (1991). Do animals have the option of withholding signals when communication is inappropriate? The audience effect. In Cognitive Ethology: The Minds of Other Animals (Essays in Honor of Donald R. Griffin), ed. Ristau, C. A., pp. 187208. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Marler, P. & Peters, S. (1989). Species differences in auditory responsiveness in early vocal learning. In The Comparative Psychology of Audition: Perceiving Complex Sounds, ed. Dooling, R. J. & Hülse, S. H., pp. 243–73. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Marler, P. & Tamura, M. (1962). Song “dialects” in three populations of white-crowned sparrows. Condor, 64, 368–77.Google Scholar
Marler, P. & Tamura, M. (1964). Culturally transmitted patterns of vocal behavior in sparrows. Science, 146, 1483–6.Google Scholar
Martel, F. L., Nevison, C. M., Simpson, M. J. A. & Keverne, E. B. (1995). Effects of opioid receptor blockade on the social behavior of rhesus monkeys living in large family groups. Developmental Psychobiology, 28, 7184.Google Scholar
Marten, K. & Marler, P. (1977). Sound transmission and its significance for animal communication. I. Temperate habitats. Behavioral Ecology and Sociobiology, 2, 271–90.Google Scholar
Marten, K., Quine, D. & Marler, P. (1977). Sound transmission and its significance for animal vocalization. II. tropical forest habitats. Behavioral Ecology and Sociobiology, 2, 291302.Google Scholar
Martin, G. (1981). Avian vocalizations and the sound interference model of Roberts et al. Animal Behaviour, 29, 632–3.Google Scholar
Maruscukova, J. L., Linhart, T. P., Ratcliffe, V. F., Taillet, C., Reby, D. & Spinka, M. (2015). Humans (Homo sapiens) judge the emotional content of piglet calls based on simple acoustic parameters. Journal of Comparative Psychology, 129, 121–31.Google Scholar
Masco, C., Allesina, S., Mennill, D. J. & Pruett-Jones, S. (2016). The song overlap null model generator (SONG): a new tool for distinguishing between random and non-random song overlap. Bioacoustics, 25, 2940.Google Scholar
Mason, W. A. (1971). Motivational factors in psychosocial development. In Nebraska Symposium on Motivation, ed. Arnold, W. J. & Page, M. M., pp. 3567. Lincoln: University of Nebraska Press.Google Scholar
Mason, W. A. (1979a). Environmental models and mental modes: Representational processes in the great apes. In The Great Apes: Perspective on Human Evolution, ed. Hamburg, D. A. & McCown, E. R., pp. 277–93.Google Scholar
Mason, W. A. (1979b). Ontogeny of social behavior. In Handbook of Behavioral Neurobiology, Vol. 3, ed. Marler, P. & Vandenbergh, J. G., pp. 128. New York: Plenum Press.Google Scholar
Mason, W. A. (1979c). Wanting and knowing: A biological perspective on maternal deprivation. In Origins of the Infant’s Social Responsiveness, ed. Thoman, E., pp. 225–49. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Mason, W. A. (1986). Behavior implies cognition. In Integrating Scientific Disciplines, ed. Bechtel, W., pp. 297307. Dordrecht, The Netherlands: Martinus Nijhoff Publishers.Google Scholar
Mateo, J. M. (1996). The development of alarm-call response behaviour in free-living juvenile Belding’s ground squirrels. Animal Behaviour, 52, 489505.Google Scholar
Maynard Smith, J. (1974). The theory of games and the evolution of animal conflicts. Journal of Theoretical Biology, 47, 209–21.Google Scholar
Maynard Smith, J. (1979). Game theory and the evolution of behaviour. Proceedings of the Royal Society of London B, 205, 475–88.Google Scholar
Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge: Cambridge University Press.Google Scholar
Maynard Smith, J. & Harper, D. (2003). Animal Signals. Oxford: Oxford University Press.Google Scholar
Maynard Smith, J. & Harper, D. G. C. (1995). Animal signals: models and terminology. Journal of Theoretical Biology, 177, 305–11.Google Scholar
Maynard Smith, J. & Price, G. R. (1973). The logic of animal conflict. Nature, 246, 1518.Google Scholar
Mayr, E. (1961). Causes and effect in biology. Science, 134, 1501–6.Google Scholar
Mayr, E. (1963). Animal Species and Evolution. Cambridge: Harvard University Press.Google Scholar
Mayr, E. (1982). The Growth of Biological Thought. Cambridge: Belknap Press of Harvard University.Google Scholar
Mayr, E. (1988). Toward a New Philosophy of Biology: Observations of an Evolutionist. Cambridge: Belknap Press of Harvard University Press.Google Scholar
McComb, K., Taylor, A. M., Wilson, C. & Charlton, B. D. (2009). The cry embedded within the purr. Current Biology, 19, R507-R508.Google Scholar
McConnell, P. B. (1991). Lessons from animal trainers: The effect of acoustic structure on an animal’s response. In Perspectives in Ethology. 9, ed. Bateson, P. P. G. & Klopfer, P. H., pp. 165–87. New York: Plenum Press.Google Scholar
McDermott, J. (2008). The evolution of music. Nature, 453, 287–8.Google Scholar
McDonald, P. G., Rollins, R. A., & Godfrey, S. (2016). The relative importance of spatial proximity, kin selection and potential “greenbeard” signals on provisioning behavior among helpers in a cooperative bird. Behavioral Ecology & Sociobiology 70, 133–43.Google Scholar
McGregor, P. K. (1992). Playback and Studies of Animal Communication. New York: Plenum Press.Google Scholar
McGregor, P. K. (1994). Sound cues to distance: the perception of range. In Perception and Motor Control in Birds, ed. Davies, M. N. O. & Green, P. R., pp. 7494. Berlin: Springer-Verlag.Google Scholar
McGregor, P. K. (Ed.) (2005). Animal Communication Networks. Cambridge: Cambridge University Press.Google Scholar
McGregor, P. K. & Avery, M. I. (1986). The unsung songs of great tits (Parus major): learning neighbour’s songs for discrimination. Behavioral Ecology and Sociobiology, 18, 311–16.Google Scholar
McGregor, P. K. & Dabelsteen, T. (1996). Communication networks. In Ecology and Evolution of Acoustic Communication in Birds, ed. Kroodsma, D. E. & Miller, E. H., pp. 409–25. Ithaca: Cornell University Press.Google Scholar
McGregor, P. K. & Falls, R. B. (1984). The response of western meadowlarks (Sturnella neglecta) to the playback of undegraded and degraded calls. Canadian Journal of Zoology, 62, 2125–8.Google Scholar
McGregor, P. K. & Krebs, J. R. (1984). Sound degradation as a distance cue in great tit (Parus major) song. Behavioral Ecology and Sociobiology, 16, 4956.Google Scholar
McGregor, P. K., Krebs, J. R. & Ratcliffe, L. M. (1983). The response of great tits (Parus major) to the playback of degraded and undegraded songs: the effect of familiarity with the stimulus song type. Auk, 100, 898906.Google Scholar
Meier, V., Rasa, O. A. E. & Scheich, H. (1983). Call system similarity in a ground-living social bird and a mammal in the bush habitat. Behavioral Ecology and Sociobiology, 12, 59.Google Scholar
Melchior, H. R. (1971). Characteristics of Arctic ground squirrel alarm calls. Oecologia, 7, 184–90.Google Scholar
Michaels, C. F. & Carello, C. (1981). Direct Perception. Englewood Cliffs: Prentice-Hall.Google Scholar
Michelsen, A. (1978). Sound reception in different environments. In In Sensory Ecology, Review and Perspectives, ed. Ali, M. A., pp. 345–73. New York: Plenum Press.Google Scholar
Miles, L. & Johnston, L. (2007). Detecting happiness: perceiver sensitivity to enjoyment and non-enjoyment smiles. Journal of Nonverbal Behavior, 31, 259–71.Google Scholar
Miller, J. G. (1965). Living systems: Basic concepts. Behavioral Science, 10, 193411.Google Scholar
Mineka, S. & Cook, M. (1988). Social learning and the acquisition of snake fear in monkeys. In Social Learning: Biological and Psychological Perspectives, ed. Zentall, T. R. & Galef, B. G., pp. 5174. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Mineka, S., Davidson, M., Cook, M. & Keir, R. (1984). Observational conditioning of snake fear in rhesus monkeys. Journal of Abnormal Psychology, 93, 355–72.Google Scholar
Mitchell, R. W. (1986). A framework for discussing deception. In Deception: Perspectives on Human and Nonhuman Deceit, ed. Mitchell, R. W. & Thompson, N. S., pp. 340. Albany: State University of New York Press.Google Scholar
Møller, A. P. (1990). Deceptive use of alarm calls by male swallows, Hirundo rustica: A new paternity guard. Behavioral Ecology, 1, 16.Google Scholar
Molnar-Szakacs, I. (2015). Please don’t stop the music: commentary on “Musical sounds, motor resonance, and detectable agency”. Empirical Musicology Review, 10, 46–9.Google Scholar
Molnar-Szakacs, I., & Overy, K. (2006). Music and mirror neurons: From motion to “e”motion. Social Cognitive and Affective Neuroscience, 1, 235–41.Google Scholar
Mooney, R. (2009). Neurobiology of song learning. Current Opinion in Neurobiology, 19, 654–60.Google Scholar
Morse, D. H. (1974). Niche breadth as a function of social dominance. American Naturalist, 108, 818–30.Google Scholar
Morton, E. S. (1970). Ecological sources of selection on avian sounds. PhD, Yale University.Google Scholar
Morton, E. S. (1975). Ecological sources of selection on avian sounds. American Naturalist, 109, 1734.Google Scholar
Morton, E. S. (1977). On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. American Naturalist, 111, 855–69.Google Scholar
Morton, E. S. (1982). Grading, discreteness, redundancy, and motivation-structural rules. In Acoustic Communication in Birds, 1, ed. Kroodsma, D. E. & Miller, E. H., pp. 183212. New York: Academic Press.Google Scholar
Morton, E. S. (1986). Predictions from the ranging hypothesis for the evolution of long distance signals in birds. Behaviour, 99, 6586.Google Scholar
Morton, E. S. (1987). The effects of distance and isolation on song-type sharing in the Carolina Wren. Wilson Bulletin, 99, 601–10.Google Scholar
Morton, E. S. (1988). “Innate”: Outdated and inadequate or linguistic convenience? Brain & Behavioral Sciences, 11, 642–3.Google Scholar
Morton, E. S. (1994). Sound symbolism and its role in non-human vertebrate communication. In Sound Symbolism and Human Speech, ed. Hinton, L., Ohala, J. & Nichols, J., pp. 348–65. Cambridge: Cambridge University Press.Google Scholar
Morton, E. S. (1996a). Why songbirds learn songs: an arms race over ranging? Poultry & Avian Biology Reviews, 7, 6571.Google Scholar
Morton, E. S. (1996b). A comparison of vocal behavior among tropical and temperate passerine birds. In The Evolution and Ecology of Vocal Behavior in Birds, ed. Kroodsma, D. E. & Miller, E. H., pp. 258–68. Ithaca: Cornell University Press.Google Scholar
Morton, E. S. (2000). An evolutionary view of the origins and functions of avian vocal communication. Japanese Journal of Ornithology, 49, 6878.Google Scholar
Morton, E. S. (2012). Putting distance back into bird song with mirror neurons. The Auk, 129, 560–4.Google Scholar
Morton, E. S. & Coss, R. G. (2013). Mitogenetic rays and the information metaphor: transmitted information has had its day. In Animal Communication Theory, Information and Influence, ed. Stegmann, U. E., pp. 207–32. Cambridge: Cambridge University Press.Google Scholar
Morton, E. S. & Derrickson, K. C. (1996). Song ranging by the dusky antbird, Cercomacra tyrannina: ranging without song learning. Behavioral Ecology and Sociobiology, 39, 195201.Google Scholar
Morton, E. S., Forman, L. & Braun, M. (1990). Extrapair fertilizations and the evolution of colonial breeding in purple martins. Auk, 107, 275–83.Google Scholar
Morton, E. S., Gish, S. L. & Van der Voort, M. (1986). On the learning of degraded and undegraded songs in the Carolina wren. Animal Behaviour, 34, 815–20.Google Scholar
Morton, E. S., Howlett, J., Kopysh, N. C. & Chiver, I. (2006). Song ranging by incubating male Blue-headed Vireos: the importance of song representation in repertoires and implications for song delivery patterns and local/foreign dialect discrimination. Journal of Field Ornithology, 77, 291301. doi: 10.1111/j.1557–9263.2006.00055.xGoogle Scholar
Morton, E. S. & Page, J. (1992). Animal Talk: Science and the Voices of Nature. New York: Random House.Google Scholar
Morton, E. S. & Shalter, M. D. (1977). Vocal response to predators in pair-bonded Carolina wrens. Condor, 79, 222–7.Google Scholar
Morton, E. S. & Stutchbury, B. J. M. (2012). Vocal communication in androgynous territorial defense by migratory birds. International Scholarly Research Network Zoology, doi:10.5402/2012/729307.Google Scholar
Morton, E. S., Stutchbury, B. J. M. & Chiver, I. (2010). Parental conflict and brood desertion by females in blue-headed vireos. Behavioral Ecology and Sociobiology, 64, 947–54. doi: 10.1007/s00265-010-0910-7.Google Scholar
Morton, E. S., Stutchbury, B. J. M., Howlett, J. S. & Piper, W. H. (1998). Genetic monogamy in the blue-headed vireo and a comparison with a sympatric vireo with extrapair paternity. Behavioral Ecology, 9, 515–24.Google Scholar
Morton, E. S. & Young, K. (1986). A previously undescribed method of song matching in a species with a single song “type,” the Kentucky warbler (Oporornis formosus). Ethology, 72, 334–42.Google Scholar
Mountjoy, D. J. & Lemon, R. E. (1996). Female choice for complex song in the European starling: A field experiment. Behavioral Ecology and Sociobiology, 38, 6571.Google Scholar
Moynihan, M. (1970). Control, suppression, decay, disappearance and replacement of displays. Journal of Theoretical Biology, 29, 85112.Google Scholar
Moynihan, M. (1973). The evolution of behavior and the role of behavior in evolution. Breviora, 415, 129.Google Scholar
Moynihan, M. (1982). Why is lying about intentions rare during some kinds of contests? Journal of Theoretical Biology, 97, 712.Google Scholar
Moynihan, M. (1985). Communication and Noncommunication by Cephalopods. Bloomington: Indiana University Press.Google Scholar
Moynihan, M. (1998). The Social Regulation of Competition and Aggression: With a Discussion of Tactics and Strategies. Washington: Smithsonian Institution Press.Google Scholar
Murray, I. R. & Arnott, J. L. (2008). Applying an analysis of acted vocal emotions to improve the simulation of synthetic speech. Computer Speech & Language, 22, 107–29.Google Scholar
Myrberg, A. A. (1981). Sound communication and hearing in fishes. In Hearing and Sound Communication in Fishes, ed. Tavolga, W. N., Popper, A. N. & Fay, R. R., pp. 395426. New York: Springer-Verlag.Google Scholar
Naguib, M. & Wiley, R. H. (2001). Estimating the distance to a source of sound: mechanisms and adaptations for long-range communication. Animal Behaviour, 62, 825–37.Google Scholar
Narins, P. M. & Capranica, R. R. (1976). Sexual differences in the auditory system of the treefrog Eleutherodactylus coqui. Science, 192, 378–80.Google Scholar
Narins, P. M. & Smith, S. L. (1986). Clinal variation in anuran advertisement calls: basis for acoustic isolation? Behavioral Ecology and Sociobiology, 19, 135–41.Google Scholar
Negus, V. E. (1949). The Comparative Anatomy and Physiology of the Larynx. New York: Hafner.Google Scholar
Neil, S. J. (1983). Contests for space in breeding Cichlasoma meeki: The use of increased apparent size displays. Behaviour, 87, 283–97.Google Scholar
Nelson, D. A. (1984). Communication of intentions during agonistic contexts by the pigeon guillemot, Cepphus Columbia. Behaviour, 88, 145–89.Google Scholar
Nelson, D. A., Marler, P. & Palleroni, A. (1995). A comparative approach to vocal learning: intraspecific variation in the learning process. Animal Behaviour, 50, 8397.Google Scholar
Nemeth, E., Pieretti, N., Zollinger, S. A., Geberzahn, N., Partecke, J., Miranda, A. C. & Brumm, H. (2013). Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities. Proceedings of the Royal Society B-Biological Sciences, 280, doi:10.1098/rspb.2012.2798.Google Scholar
Neudorf, D. L., Stutchbury, B. J. M. & Piper, W. L. (1997). Covert extraterritorial behavior of female hooded warblers. Behavioral Ecology, 8, 595600.Google Scholar
Neuweiler, G. (1990). Auditory adaptations for prey capture in echolocating bats. Physiological Reviews, 70, 615–41.Google Scholar
Nicastro, N. & Owren, M. J. (2003). Classification of domestic cat (Felis catus) vocalizations by naïve and experienced human listeners. Journal of Comparative Psychology, 117, 4452.Google Scholar
Niedenthal, P. M., Mermellod, M., Maringer, M. & Hess, U. (2010). The simulation of smiles (SIM) model: embodied simulation and the meaning of facial expression. Behavioral and Brain Sciences, 33, 417–80.Google Scholar
Norman-Haignere, S., Kanwisher, N. G.& McDermott, J. H. (2015). Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron, 88, 1281–96.Google Scholar
Nottebohm, F. (1975a). zoologist’s view of some language phenomenon with particular emphasis on vocal learning. In Foundations of Language Development, vol.1, ed. Lenneberg, E. H. & Lenneberg, E., pp. 61103. New York: Academic Press.Google Scholar
Nottebohm, F. (1975b). Continental patterns of song variability in Zonotrichia capensis: some possible correlates. American Naturalist, 109, 605–24.Google Scholar
Nottebohm, F., Alverez-Buylla, A., Cynx, J., Kirn, J., Ling, C.-Y., Nottebohm, M., Suter, R., Tolles, A. & Williams, H. (1990). Song learning in birds: The relation between perception and production. Philosophical Transactions of the Royal Society of London, Series B, 329,115–24.Google Scholar
Oetting, S., Prove, E. & Bischof, H.-J. (1995). Sexual imprinting as a two-stage process: Mechanisms of information storage and stabilization. Animal Behaviour, 50, 393403.Google Scholar
Ohala, J. J. (1980). The acoustic origin of the smile. Journal of the Acoustic Society of America, 68, S33.Google Scholar
Ohala, J. J. (1982). The voice of dominance. Journal of the Acoustical Society of America, 72, S66.Google Scholar
Ohala, J. J. (1984). An ethological perspective on common cross-language utilization of F0 of voice. Phonetica, 41, 116.Google Scholar
Ohala, J. J. (1994). The frequency code underlies the sound-symbolic use of voice pitch. In Sound Symbolism, ed. Hinton, L., Nichols, J. & Ohala, J. J., pp. 325–47. Cambridge: Cambridge University Press.Google Scholar
Ohala, J. J. (2010). What’s behind the smile? Behavioral and Brain Sciences, 33, 456–7.Google Scholar
Őhman, A. & Mineka, S. (2003). The malicious serpent: snakes as a prototypical stimulus for an evolved module of fear. Current Directions in Psychological Sciences, 12, 59.Google Scholar
Orci, K. M, Petroczki, K. & Barta, Z. (2016). Instantaneous song modification in response to fluctuating traffic noise. Animal Behaviour, 112, 187–94.Google Scholar
Overy, K. & Molnar-Szakacs, I. (2009). Being together in time: musical experience and the mirror neuron system. Music Perception, 26, 489504.Google Scholar
Owings, D. H. (1994). How monkeys feel about the world: A review of how monkeys see the world. Language and Communication, 14, 1530.Google Scholar
Owings, D. H. & Coss, R. G. (1991). Context and animal behavior I: Introduction and review of theoretical issues. Ecological Psychology, 3, 19.Google Scholar
Owings, D. H. & Hennessy, D. F. (1984). The importance of variation in sciurid visual and vocal communication. In The Biology of Ground-Dwelling Squirrels: Annual Cycles, Behavioral Ecology, and Sociality, ed. Mûrie, J. A. & Michener, G. R., pp. 169200. Lincoln: University of Nebraska Press.Google Scholar
Owings, D. H., Hennessy, D. F., Leger, D. W. & Gladney, A. B. (1986). Different functions of “alarm” calling for different time scales: A preliminary report on ground squirrels. Behaviour, 99, 101–16.Google Scholar
Owings, D. H. & Leger, D. W. (1980). Chatter vocalizations of California ground squirrels: Predator- and social-role specificity. Zeitschrift für Tierpsychologie, 54, 163–84.Google Scholar
Owings, D. H. & Loughry, W. J. (1985). Variation in snake-elicited jumpyipping by black-tailed prairie dogs: Ontogeny and snake specificity. Zeitschrift für Tierpsychologie, 70, 177200.Google Scholar
Owings, D. H. & Morton, E. S. (1997). The role of information in communication: an assessment/management approach. In Communication. Perspectives in Ethology, 12, ed. Owings, D. H., Beecher, M. D. & Thompson, N. S.. New York: Plenum Press.Google Scholar
Owings, D. H. & Morton, E. S. (1998). Animal Vocal Communication: a New Approach. Cambridge: Cambridge University Press.Google Scholar
Owings, D. H. & Owings, S. C. (1979). Snake-directed behavior by black-tailed prairie dogs (Cynomys ludovicianus). Zeitschrift für Tierpsychologie, 49, 3554.Google Scholar
Owings, D. H. & Virginia, R. A. (1978). Alarm calls of California ground squirrels (Spermophilus beecheyi). Zeitschrift für Tierpsychologie, 46, 5878.Google Scholar
Owings, D. H. & Zeifman, D. M. (2004). Human infant crying as an animal communication system: insights from an assessment/management approach. In Evolution of Communication Systems: A Comparative Approach, ed. Oller, D. K. & Griebel, U.. Cambridge, Massachusetts: MIT Press.Google Scholar
Owren, M. J., Amoss, R. T. & Rendall, D. (2010). Two organizing principles of vocal production: implications for nonhuman and human primates. American Journal of Primatology, 71, 115.Google Scholar
Owren, M. J. & Rendall, D. (1997). An affective-conditioning model of nonhuman primate vocal signaling. In Communication. Perspectives in Ethology, 12, ed. Owings, D. H., Beecher, M. D. & Thompson, N. S.. New York: Plenum Press.Google Scholar
Owren, M. J. & Rendall, D. (2001). Sound on the rebound: bringing form and function back to the forefront in understanding nonhuman primate vocal signaling. Evolutionary Anthropology 10, 5871.Google Scholar
Owren, M. J., Rendall, D. & Bachorowski, J. A. (2003). Nonlinguistic vocal communication. In: Primate Psychology, ed. Maestripieri, D.. pp. 359–94. Cambridge: Harvard University Press.Google Scholar
Palleroni, A., Hauser, M. & Marler, P. (2005). Do responses of galliform birds vary adaptively with predator size? Animal Cognition, 8, 200–10.Google Scholar
Parker, G. A. (1974). Assessment strategy and the evolution of fighting behaviour. Journal of Theoretical Biology, 47, 223–43.Google Scholar
Parker, G. A. (1979). Sexual selection and sexual conflict. In Sexual Selection and Reproductive Competition in Insects, ed. Blum, M. and Blum, N., pp. 123–66. New York and London: Academic Press.Google Scholar
Parker, G. A. & Rubenstein, D. I. (1981). Role assessment, reserve strategy, and acquisition of information in asymmetric animal contests. Animal Behaviour, 29, 221–40.Google Scholar
Parr, L. A. & Waller, B. (2006). Understanding chimpanzee facial expression: insights into the evolution of communication. Social Cognitive and Affective Neuroscience, 1, 221–8.Google Scholar
Parris, K. M. & McCarthy, M. A. (2013). Predicting the effects of urban noise on the active space of avian vocal signals. American Naturalist, 182, 452–64.Google Scholar
Paton, D. (1986). Communication by agonistic displays: II. Perceived information and the definition of agonistic displays. Behaviour, 99, 157–75.Google Scholar
Patricelli, G L., Coleman, S. W. & Borgia, G. (2006). Male satin bowerbirds, Ptilonorhynchus violaceous, adjust their display intensity in response to female startling: an experiment with robotic females. Animal Behaviour, 71, 4959.Google Scholar
Payne, R. B. (1979). Song structure, behavior, and sequence of song types in a population of village indigobirds, Vidua chalybeata. Animal Behavior, 27, 9971013.Google Scholar
Peirce, C. S. (1958). The Collected Papers of Charles Sanders Peirce, 1931–1935. Cambridge: Cambridge University Press.Google Scholar
Pereira, M. E. & Macedonia, J. M. (1991). Ringtailed lemur anti-predator calls denote predator class, not response urgency. Animal Behaviour, 41, 543–4.Google Scholar
Peters, G. (1984). On the structure of friendly close range vocalizations in terrestrial carnivores (Mammalia, Carnivora, Fissipedia). Zeitschrift für Saugetierkunde, 49, 157–82.Google Scholar
Peters, G. (1989). Acoustic communication by fissiped carnivores. In Carnivore Behavior, Ecology, and Evolution, ed. Gittleman, J. L., pp. 1456. Ithaca: Cornell University Press.Google Scholar
Piaget, J. (1971). Biology and Knowledge. Chicago: University of Chicago Press.Google Scholar
Pickens, A. L. (1928). Auditory protective mimicry of the chickadee. Auk, 45, 302–4.Google Scholar
Pisanski, K., Fraccaro, P. J., O’Connor, J. M. & Feinberg, D. R. (2014). Return to Oz: voice pitch facilitates assessments of men’s body size. Journal of Experimental Psychology-Human Perception and Performance, 40, 1316–31. doi: 10.1037/a0036956.Google Scholar
Pisanski, K., Jones, B. C., Fink, B., O’Connor, J. M., DeBruine, L. M., Röder, S. & Feinberg, D. R. (2016). Voice parameters predict sex-specific body morphology in men and women. Animal Behaviour, 112, 1322.Google Scholar
Pitcher, B. J., Mesaudi, A. & McElliott, A. G. (2013). Sex-biased sound symbolism in English-language first names. PLOS One, doi: 10.1371/journal.pone.0064825.Google Scholar
Ploog, D. W. (1992). The evolution of vocal communication. In Nonverbal Vocal Communication: Comparative and Developmental Approaches, ed. Papousek, V., Jurgens, U. & Papousek, M., pp. 630. Cambridge and Paris: Cambridge University Press and Editions de la Science de l’Homme.Google Scholar
Pogány, Á., Szentirmai, I., Komdeur, J. & Székely, T. (2008). Sexual conflict and consistency of offspring desertion in Eurasian penduline tit Remiz pendulinus. BMC Evolutionary Biology, 8, 242. doi:10.1186/1471–2148/8/242.Google Scholar
Pongrácz, P., Molnár, Cs. & Miklósi, Á. (2006). Acoustic parameters of dog barks carry emotional information for humans. Applied Animal Behaviour Science, 100, 228–40.Google Scholar
Pongrácz, P., Molnár, Cs., Miklósi, Á. & Csányi, V. (2005). Human listeners are able to classify dog barks recorded in different situations. Journal of Comparative Psychology, 119, 136–44.Google Scholar
Poole, J. H. (1987). Rutting behavior in African elephants: The phenomenon of musth. Behaviour, 102, 283316.Google Scholar
Poole, J. H. (1989a). Announcing intent: The aggressive state of musth in African elephants. Animal Behaviour, 37, 140–52.Google Scholar
Poole, J. H. (1989b). Mate guarding, reproductive success and female choice in African elephants. Animal Behaviour, 37, 842–9.Google Scholar
Poole, J. H., Kasman, L. H., Ramsay, E. C. & Lasley, B. L. (1984). Musth and urinary testosterone concentrations in the African elephant (Loxodonta africana). Journal of Reproduction and Fertility, 70, 255–60.Google Scholar
Poole, J. H. & Moss, C. J. (1981). Musth in the African elephant, Loxodonta africana. Nature, 292, 830–1.Google Scholar
Popp, J. W. & Ficken, R. W. (1987). Effects of non-specific singing on the song of the ovenbird. Bird Behaviour, 7, 22–6.Google Scholar
Poran, N. S. & Coss, R. G. (1990). Development of antisnake defenses in California ground squirrels (Spermophilus beecheyi): I. Behavioral and immunological relationships. Behaviour, 112, 222–45.Google Scholar
Prather, J. F., Peters, S., Nowicki, S. & Mooney, R. (2008). Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature, 451, 305–10.Google Scholar
Pridmore-Brown, D. C. & Ingard, U. (1955). Sound propagation into the shadow zone in a temperature-stratified atmosphere above a plane boundary. Journal of the Acoustical Society of America, 27, 3642.Google Scholar
Prins, H. H. T. (1989). Condition changes and choice of social environment in African buffalo bulls. Behaviour, 108, 297324.Google Scholar
Proctor, H. C. (1993). Sensory exploitation and the evolution of male mating behaviour: A cladistic test using water mites. Animal Behaviour, 44, 745–52.Google Scholar
Provine, R. R. (1996a). Laughter. American Scientist, 84, 3845.Google Scholar
Provine, R. R. (1996b). Contagious yawning and laughter: Significance for sensory feature detection, motor pattern generation, imitation, and the evolution of social behavior. In Social Learning in Animals: The Roots of Culture, ed. Heyes, C. M. & Galef, B. G., pp. 179208. San Diego: Academic Press.Google Scholar
Provine, R. R. & Yong, Y. L. (1991). Laughter: a stereotyped vocalization. Ethology, 89, 115–24.Google Scholar
Prum, R. O. (2014). Interspecific social dominance mimicry in birds. Zoological Journal of the Linnean Society, 172, 910–41.Google Scholar
Puts, D. A. (2005). Mating context and menstrual phase affect women’s perferences for male voice pitch. Evolution of Human Behavior, 26, 388–97. doi: 10.1016/j.evolhumbehav.2005.03.001.Google Scholar
Puts, D. A., Apicella, C. L. & Cardenas, R. A. (2012). Masculine voices signal men’s threat potential in forager and industrial societies. Proceedings of the Royal Society B, 279, 601–9. doi: 10.1098/rspb.2011.0829.Google Scholar
Radesater, T., Jakobsson, S., Andbjer, N., Bylin, A. & Nystrom, K. (1987). Song rate and pair formation in the willow warbler, Phylloscopus trochilus. Animal Behavior, 35, 1645–51.Google Scholar
Rand, A. S. & Ryan, M. J. (1981). The adaptive significance of a complex vocal repertoire in a neotropical frog. Zeitschrift für Tierpsychologie, 57, 209–14.Google Scholar
Rasa, O. A. E. (1986). Coordinated vigilance in dwarf mongoose family groups: the “watchman’s song” hypothesis and the costs of guarding. Ethology, 71, 340–4.Google Scholar
Reby, D., MccComb, K., Cargnelutti, B. et al. (2005). Red deer stags use formants as assessment cues during intrasexual agonistic interactions. Proceedings of the Royal Society of London B: Biological Sciences, 272, 941–7.Google Scholar
Reichert, M. S. & Gerhardt, H. C. (2013). Gray tree frogs, Hyla versicolor, give lower-frequency aggressive calls in more escalated contests. Behavioral Ecology and Sociobiology, 67, 795804.Google Scholar
Reid, M. L. (1987). Costliness and reliability in the singing vigour of Ipswich sparrows. Animal Behavior, 35, 1735–43.Google Scholar
Rendall, D. (1996). Social communication and vocal recognition in free-ranging rhesus monkeys (Macaca mulatto). PhD, University of California, Davis.Google Scholar
Rendall, D. & Owren, M. J. (2013). Communication without meaning or information: abandoning language-based and informational constructs in animal communication theory, ed. Stegmann, U. E., pp. 151–88. In Animal Communication Theory, Information and Influence. Cambridge: Cambridge University Press.Google Scholar
Rendall, D., Owren, M. J. & Ryan, M. J. (2009). What do animal signals mean? Animal Behaviour, 78, 233–40.Google Scholar
Rendall, D., Rodman, P. S. & Emond, R. E. (1996). Vocal recognition of individuals and kin in free-ranging rhesus monkeys. Animal Behaviour, 51, 1007–15.Google Scholar
Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it is. American Psychologist, 43, 151–60.Google Scholar
Revell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology. Methods in Ecology and Evolution 3, 217–23.Google Scholar
Richards, D. G. (1981). Estimation of distance of singing conspecifics by the Carolina wren. Auk, 98, 127–33.Google Scholar
Richards, D. G. & Wiley, R. H. (1980). Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communiction. American Naturalist, 115, 381–99.Google Scholar
Riechert, S. E. (1978). Games spiders play: Behavioral variability in territorial disputes. Behavioral Ecology and Sociobiology, 3, 135–62.Google Scholar
Riechert, S. E. E. (1982). Interaction strategies: Communication vs. coercion. Princeton, New Jersey: Princeton University Press.Google Scholar
Riede, T. & Fitch, T. (1999). Vocal tract length and acoustics of vocalization in the domestic dog (Canis familiaris). Journal of Experimental Biology, 202, 2859–67.Google Scholar
Rios-Chelen, A. A., Lee, G. C. & Patricelli, G. L. (2015). Anthropogenic noise is associated with changes in acoustic but not visual signals in red-winged blackbirds. Behavioral Ecology and Sociobiology, 69, 1139–51.Google Scholar
Rizzolatti, G. & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience 27, 169–92.Google Scholar
Roberts, J. P., Hunter, M. L. & Kacelnik, A. (1981). The ground effect and acoustic communication. Animal Behaviour, 29, 633–4.Google Scholar
Roberts, T. F., Tschida, K. A., Klein, M. E. & Mooney, R. (2010). Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature, 463, 948–52.Google Scholar
Rodd, F. H. & Hughes, K. A. (2002). A possible non-sexual origin of mate preference: are male guppies mimicking a fruit? Proceedings of the Royal Society B, 269, 475–81.Google Scholar
Rosenblatt, J. S. (1992). Hormone–behavior relations in the regulation of parental behavior. In Behavioral Endocrinology, ed. Becker, J. B., Breedlove, S. M. & Crews, D., pp. 219–59. Cambridge: MIT Press.Google Scholar
Rothstein, S. I. (1975). Evolutionary rates and host defenses against avian brood parasites. American Naturalist, 109, 161–76.Google Scholar
Rothstein, S. I. & Fleischer, R. C. (1987). Vocal dialects and their possible relation to honest status signaling in the brown-headed cowbird. Condor, 89, 123.Google Scholar
Rowe, M. P., Coss, R. G. & Owings, D. H. (1986). Rattlesnake rattles and burrowing owl hisses: A case of acoustic Batesian mimicry. Ethology, 72, 5371.Google Scholar
Rowe, M. P. & Owings, D. H. (1978). The meaning of the sound of rattling by rattlesnakes to California ground squirrels. Behaviour, 66, 252–67.Google Scholar
Rowe, M. P. & Owings, D. H. (1990). Probing, assessment, and management during interactions between ground squirrels and rattlesnakes. Part 1: Risks related to rattlesnake size and body temperature. Ethology, 86, 237–49.Google Scholar
Rowe, M. P. & Owings, D. H. (1996). Probing, assessment, and management during interactions between ground squirrels (Rodentia: Sciuridae) and rattlesnakes (Squamata: Viperidae). 2: Cues afforded by rattlesnake rattling. Ethology, 102, 856–74.Google Scholar
Rowell, T. E. (1962). Agonistic noises of the Rhesus monkey. Symposia of the Zoological Society of London, 8, 91–6.Google Scholar
Rundus, A. S., Owings, D. H., Joshi, S. S., Chinn, E. & Giannini, N. (2009). Ground squirrels use an infrared signal to deter rattlesnake predation. Proceedings of the National Academy of Sciences USA, 104, 14372–6.Google Scholar
Ryan, M. J. (1980). Female mate choice in a neotropical frog. Science, 209, 523–5.Google Scholar
Ryan, M. J. (1985). The Túngara Frog: A Study in Sexual Selection and Communication. Chicago: University of Chicago Press.Google Scholar
Ryan, M. J. (1990). Sensory systems, sexual selection, and sensory exploitation. Oxford Surveys in Evolutionary Biology, 7, 157–95.Google Scholar
Ryan, M. J. (1994). Mechanisms underlying sexual selection. In Behavioral Mechanisms in Evolutionary Ecology, ed. Real, L. A., pp. 190215. Chicago: University of Chicago Press.Google Scholar
Ryan, M. J. (1998). Receiver biases, sexual selection, and the evolution of sex differences. Science, 281, 19992003.Google Scholar
Ryan, M. J. (2013). The importance of integrative biology to sexual selection and communication. In Animal Communication Theory, Information and Influence, ed. Stegmann, U. E., pp. 233–55. Cambridge: Cambridge University Press.Google Scholar
Ryan, M. J. & Keddy, H. A. (1992). Directional patterns of female mate choice and the role of sensory biases. American Naturalist, 139, S4S35.Google Scholar
Ryan, M. J. & Rand, A. S. (1990). The sensory basis of sexual selection for complex calls in the Túngara frog, Physalaemus pustulosus (sexual selection for sensory exploitation). Evolution, 44, 305–14.Google Scholar
Ryan, M. J. & Rand, A. S. (1993a). Phylogenetic patterns of behavioral mate recognition systems in the Physalaemus pustulosus species group (Anura: Leptodactylidae): The role of ancestral and derived characters and sensory exploitation. In Evolutionary Patterns and Processes, ed. Lees, D. & Edwards, D., pp. 251–67. London: Academic Press.Google Scholar
Ryan, M. J. & Rand, A. S. (1993b). Sexual selection and signal evolution: The ghost of biases past. Proceedings of the Royal Society, London, B, 340, 187–95.Google Scholar
Ryan, M. J. & Rand, A. S. (1993c). Species recognition and sexual selection as a unitary problem in animal communication. Evolution, 47, 647–57.Google Scholar
Ryan, M. J., Fox, J. H., Wilczynski, W. & Rand, A. S. (1990). Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 343, 66–7.Google Scholar
Ryan, M. J., Tuttle, M. D. & Rand, A. S. (1982). Bat predation and sexual advertisement in a neotropical frog. American Naturalist, 119, 136–9.Google Scholar
Saranathan, V., Hamilton, D., Powell, G. V. N., Kroodsma, D. E. & Prum, R. O. (2007). Genetic evidence supports song learning in the three-wattled bellbird Procnias tricarunculata (Cotingidae). Molecular Ecology, doi: 10.1111/j.1365–294x.2007.03415.xGoogle Scholar
Sarkar, S. (2013). Information in animal communication: when and why does it matter? In Animal Communication Theory, ed. Stegmann, U. E., pp. 189205. Cambridge: Cambridge University Press.Google Scholar
Scherer, K. R. (1992). Vocal affect expression as symptom, symbol, and appeal. In Nonverbal Vocal Communication: Comparative and Developmental Approaches, ed. Papousek, H., Jurgens, U. & Papousek, V., pp. 4360. Cambridge: Cambridge University Press.Google Scholar
Scherer, K. R. (2013). The evolutionary origin of multimodal synchronization in emotional expression. Journal of Anthropological Sciences, 91, 185200.Google Scholar
Scherer, K. R., Banse, R. & Wallhott, H. G. (2001). Emotion inferences from vocal expression correlate across languages and cultures. Journal of Cross-Cultural Psychology, 32, 7692.Google Scholar
Schiestl, F. P., (2005). On the success of a swindle: pollination by deception in orchids. Naturwissenschaften, 92, 255–64.Google Scholar
Schleidt, W. M. (1973). Tonic communication: continual effects of discrete signs in animal communication systems. Journal of Theoretical Biology, 42, 359–86.Google Scholar
Schuppe, E. R., Sanin, G. D. & Fuxjager, M. J. (2016). The social context of a territorial dispute differentially influences the way individuals in breeding pairs coordinate their aggressive tactics. Behavioral Ecology and Sociobiology, 70, 673–82.Google Scholar
Schwagmeyer, P. L. & Foltz, D. W. (1990). Factors affecting the outcome of sperm competition in thirteen-lined ground squirrels. Animal Behaviour, 39, 156–62.Google Scholar
Schwartz, J. J. & Wells, K. D. (1983a). An experimental study of acoustic interference between two species of neotropical treefrogs. Animal Behaviour, 31, 181–90.Google Scholar
Schwartz, J. J. & Wells, K. D. (1983b). The influence of background noise on the behavior of a neotropical treefrog, Hyla ebraccata. Herpetologica, 39, 121–9.Google Scholar
Schwartz, J. J. & Wells, K. D. (1984a). Vocal behavior of the neotropical treefrog Hyla phlebodes. Herpetologica, 40, 452–63.Google Scholar
Schwartz, J. J. & Wells, K. D. (1984b). Interspecific acoustic interactions of the neotropical treefrog Hyla ebraccata. Behavioral Ecology and Sociobiology, 14, 211–24.Google Scholar
Schwartz, J. J. & Wells, K. D. (1985). Intra- and interspecific vocal behavior of the neotropical treefrog Hyla microcephala. Copeia, 27–38.Google Scholar
Searcy, W. A. (1992). Song repertoire and mate choice in birds. American Zoologist, 32, 7180.Google Scholar
Searcy, W. A. & Beecher, M. D. (2011). Continued scepticism that song overlapping is a signal. Animal Behaviour, 81, e1e4.Google Scholar
Searcy, W. A. & Nowicki, S. (2005). The Evolution of Animal Communication, Reliability and Deception in Signaling Systems. Princeton: Princeton University Press.Google Scholar
Sebeok, T. E. (1967). Discussion of communication processes. In Social Communication among Primates, ed. Altmann, S. A., pp. 363–78. Chicago: University of Chicago Press.Google Scholar
Seeley, T. D. & Mikheyev, A. S. (2000). Dancing bees tune both duration and rate of waggle-run production in relation to nectar-source profitability. Journal of Comparative Physiology A, 186, 813–19.Google Scholar
Senior, C., Phillips, M. L., Barnes, J. & David, A. S. (1999). An investigation into the perception of dominance from schematic faces: a study using the World Wide Web. Behavior Research Methods, Instruments and Computers, 31, 341–6.Google Scholar
Seyfarth, R. M. & Cheney, D. L. (1994). The evolution of social cognition in primates. In Behavioral Mechanisms in Evolutionary Ecology, ed. Real, L. A., pp. 371–89. Chicago: University of Chicago Press.Google Scholar
Seyfarth, R. M. & Cheney, D. L. (2010). Production, usage, and comprehension in animal vocalizations. Brain and Language, 115, 92100.Google Scholar
Seyfarth, R. M., Cheney, D. L., Bergman, T., Fischer, J., Zuberbühler, K. & Hammerschmidt, K. (2010). The central importance of information in studies of animal communication. Animal Behaviour, 80, 38.Google Scholar
Seyfarth, R. M., Cheney, D. L. & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28, 1070–94.Google Scholar
Shah, S. S., Greig, E. I., MacLean, S. A. & Bonter, D. N. (2015. Risk-based alarm calling in a nonpasserine bird. Animal Behaviour, 106, 129–36.Google Scholar
Shalter, M. D. (1978). Location of passerine seet and mobbing calls by goshawks and pygmy owls. Zeitschrift für Tierpsychologie, 46, 260–7.Google Scholar
Shalter, M. D. & Schleidt, W. M. (1977). The ability of barn owls to discriminate and localize avian alarm calls. Ibis, 119, 22–7.Google Scholar
Shannon, C. E. & Weaver, W. (1949). The Mathematical Theory of Communication. Urbana: University of Illinois Press.Google Scholar
Shapiro, J. A. (2011). Evolution: a View From the 21st Century. Upper Saddle River, NJ: FT Press Science.Google Scholar
Sherman, P. W. (1977). Nepotism and the evolution of alarm calls. Science, 197, 1246–53.Google Scholar
Sherman, P. W. (1988). Levels of analysis. Animal Behavior, 36, 616–19.Google Scholar
Shriner, W. M. (1995). Yellow-bellied marmot and golden-mantled ground squirrel responses to conspecific and heterospecific alarm calls. PhD Dissertation, University of California, Davis.Google Scholar
Shy, E. & Morton, E. S. (1986a). The role of distance, familiarity, and time of day in Carolina wrens’ responses to conspecific songs. Behavioral Ecology and Sociobiology, 19, 393400.Google Scholar
Shy, E. & Morton, E. S. (1986b). Adaptation of amplitude structure of songs to propagation in field habitat in song sparrows. Ethology, 72, 177–84.Google Scholar
Sieber, O. J. (1984). Vocal communication in raccoons (Procyon lotor). Behaviour, 90, 80113.Google Scholar
Silk, J. B., Cheney, D. L. & Seyfarth, R. M. (1996). The form and function of post-conflict interactions between female baboons. Animal Behaviour, 52, 259–68.Google Scholar
Simon, H. A. (1994). The bottleneck of attention: connecting thought with motivation. In Integrative Views of Motivation, Cognition, and Emotion. Nebraska Symposium on Motivation, 41, ed. Spaulding, W. D., pp. 121. Lincoln: University of Nebraska Press.Google Scholar
Slabbekoorn, H. (2013). Songs of the city: noise-dependent plasticity in the acoustic phenotype of urban birds. Animal Behaviour, 85, 1089–99.Google Scholar
Slater, P. J. B., Eales, L. A. & Clayton, N. S. (1988). Song learning in zebra finches (Taeniopygia guttata): Progress and prospects. In Advances in the Study of Behavior, 18, ed. Rosenblatt, J. S., Beer, C., Busnel, M.-C. & Slater, P. J. B., pp. 134. San Diego: Academic Press.Google Scholar
Smith, C. B. (1989). Risk-taking behavior in foraging juvenile herring gulls. MSc, University of Maryland, College Park.Google Scholar
Smith, S. M. (1975). Innate recognition of the coral snake pattern by a possible avian predator. Science, 187, 759–60.Google Scholar
Smith, W. J. (1963). Vocal communication of information in birds. American Naturalist, 97, 117–26.Google Scholar
Smith, W. J. (1965). Message, meaning, and context in ethology. American Naturalist, 99, 405–9.Google Scholar
Smith, W. J. (1977). The Behavior of Communicating, An Ethological Approach. Cambridge: Harvard University Press.Google Scholar
Smith, W. J. (1986a). An “informational” perspective on manipulation. In Deception, Perspectives on Human and Nonhuman Deceit, ed. Mitchell, R. W. & Thompson, N. S., pp. 7186. Albany: State University of New York Press.Google Scholar
Smith, W. J. (1986b) Signaling behavior: Contributions of different repertoires. In Dolphin Cognition and Behavior: A Comparative Approach, ed. Schusterman, R. J., Thomas, J. A. & Wood, F. G., pp. 315–30. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Smith, W. J. (1991a). Singing is based on two markedly different kinds of signaling. Journal of Theoretical Biology, 152, 241–53.Google Scholar
Smith, W. J. (1991b). Animal communication and the study of cognition. In Cognitive Ethology: The Minds of Other Animals, ed. Ristau, C. A., pp. 209–30. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Smith, W. J. (1997). The behavior of communicating, after twenty years. In Communication. Perspectives in Ethology, 12, ed. Owings, D. H., Beecher, M. D. & Thompson, N. S., pp. 753. New York: Plenum Press.Google Scholar
Smith, W. J., Smith, S. L., DeVilla, J. G. & Oppenheimer, E. C. (1976). The jump-yip display of the black-tailed prairie dog, Cynomys ludovicianus. Animal Behaviour, 24, 609–21.Google Scholar
Smith, W. J., Smith, S. L., Oppenheimer, E. C. & DeVilla, J. G. (1977). Vocalizations of the black-tailed prairie dog, Cynomys ludovicianus. Animal Behaviour, 25, 152–64.Google Scholar
Smotherman, W. P., Bell, R. W., Hershberger, W. A. & Coover, G. D. (1978). Orientation to rat pup cues: effects of maternal experiential history. Animal Behaviour, 26, 265–73.Google Scholar
Soha, J. & Peters, S. (2015). Vocal learning in songbirds and humans: a retrospective in honor of Peter Marler. Ethology, 121, 933–45.Google Scholar
Sorjonen, J. (1983). Transmission of the two most characteristic phrases of the song of the thrush nightingale Lucinia lucinia in different environmental conditions. Ornis Scandinavia, 14, 278–88.Google Scholar
Spierings, M. J. & ten Cate, C. (2014). Zebra finches are sensitive to prosodic features of human speech. Proceedings of the Royal Society B, 281, 201404080. doi:10.1098/rspb.2014.0480.Google Scholar
Squire, L. R. (1994). Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. In Memory Systems, ed. Schacter, D. L. & Tulving, E., pp. 203–31. Cambridge: MIT Press.Google Scholar
Stamps, J. (1995). Motor learning and the value of familiar space. American Naturalist, 146, 4158.Google Scholar
Stanley, C. Q., Walter, M. H., Venkatramen, M. X. & Wilkinson, G. S. (2016). Insect noise avoidance in the dawn chorus of Neotropical birds. Animal Behaviour, 112, 255–65.Google Scholar
Stearns, S. C., (1992). The Evolution of Life Histories. Oxford: Oxford University Press.Google Scholar
Steger, R. & Caldwell, R. L. (1983). Intraspecific deception by bluffing: A defense strategy of newly molted stomatopods (Arthropoda: Crustacea). Science, 221, 558–60.Google Scholar
Stegmann, U. E. (2013a). Animal Communication Theory, Information and Influence. Cambridge: Cambridge University Press.Google Scholar
Stegmann, U. E. (2013b). Introduction: A primer on information and influence in animal communication, In Animal Communication Theory, Information and Influence. ed. Stegmann, U. E., pp 139. Cambridge: Cambridge University Press.Google Scholar
Steimer, T. (2002). The biology of fear- and anxiety-related behaviors. Dialogues in Clinical Neuroscience, 4, 231–49.Google Scholar
Stephens, D. W. & Krebs, J. R. (1986). Foraging Theory. Princeton: Princeton University Press.Google Scholar
Stevenson, J. G. (1967). Reinforcing effects of chaffinch song. Animal Behaviour, 15, 427–32.Google Scholar
Stewart, K. J. & Harcourt, A. H. (1994). Gorillas’ vocalizations during rest periods: signals of impending departure? Behaviour, 130, 2940.Google Scholar
Stoddard, M. C. (2012). Mimicry and masquerade from the avian visual perspective. Current Zoology, 58, 630–48.Google Scholar
Stokes, A. W. (1971). Parental and courtship feeding in red jungle fowl. Auk, 88, 21–9.Google Scholar
Strain, J. G. & Mumme, R. L. (1988). Effects of food supplementation, song playback, and temperature on vocal territorial behavior of Carolina wrens. Auk, 105, 1116.Google Scholar
Stutchbury, B. J. M. & Morton, E. S. (2001). Behavioral Ecology of Tropical Birds. London: Academic Press.Google Scholar
Stutchbury, B. J., Rhymer, J. & Morton, E. S. (1994). Parentage and plumage in hooded warblers: support for female control of extrapair fertilizations. Behavioral Ecology, 5, 384–92.Google Scholar
Suboski, M. D. & Bartashunas, C. (1984). Mechanisms for social transmission of pecking preferences to neonatal chicks. Journal of Experimental Psychology: Animal Behavior Processes, 10, 182–94.Google Scholar
Sullivan, B. K. (1982). Significance of size, temperature, and call attributes to sexual selection in Bufo woodhousei australis. Journal of Herpetology, 16, 103–6.Google Scholar
Sullivan, K. A. (1984). Information exploitation by downy woodpeckers in mixed-species flocks. Behaviour, 91, 294311.Google Scholar
Swaisgood, R. R., Rowe, M. P. & Owings, D. H. (1999). Assessment of rattlesnake dangerousness by California ground squirrels: exploitation of cues from rattling sounds. Animal Behaviour, 57, 1301–10.Google Scholar
Tamura, N. (1995). Postcopulatory mate guarding by vocalizations in the Formosan squirrel. Behavioral Ecology and Sociobiology, 36, 377–86.Google Scholar
Tanaka, Y. (1996). Sexual selection enhances population extinction in a changing environment. Journal of Theoretical Biology, 180, 197206.Google Scholar
Tanner, W. P. & Swets, J. A. (1954). A decision-making theory of visual detection. Psychological Review, 61, 401–9.Google Scholar
Tchernichovski, O. & Wallman, J. (2008). Neurons of imitation. Nature, 451, 249–50.Google Scholar
Temeles, E. J. (1994). The role of neighbours in territorial systems: when are they “dear enemies”? Animal Behavavior, 47, 339–50.Google Scholar
Templeton, C. N., Greene, E. & Davis, K. (2005). Allometry of alarm calls: black-capped chickadees encode information about predator size. Science, 308, 1934–7.Google Scholar
ten Cate, C. (1986). Does behavior contingent stimulus movement enhance filial imprinting in Japanese quail? Developmental Psychobiology, 19, 607–14.Google Scholar
ten Cate, C. (1991). Behaviour-contingent exposure to taped song and zebra finch song learning. Animal Behaviour, 42, 857–9.Google Scholar
ten Cate, C. (1994). Perceptual mechanisms in imprinting and song learning. In Causal Mechanisms of Behavioural Development, ed. Hogan, J. A. & Bolhuis, J. J., pp. 116–46. Cambridge: Cambridge University Press.Google Scholar
Thompson, N. S. (1986). Ethology and the birth of comparative teleonomy. In Relevance of Models and Theories in Ethology, ed. Campan, R. & Dayan, R., pp. 1323, Toulouse, France: Privat, International Ethological Conference.Google Scholar
Thompson, N. S. (1997). Communication and natural design. In Communication. Perspectives in Ethology, 12, ed. Owings, D. H., Beecher, M. D. & Thompson, N. S.. New York: Plenum Press.Google Scholar
Thompson, N. S., Olson, C. & Dessureau, B. (1996). Babies cries – who’s listening – who’s being fooled. Social Research, 63, 763–84.Google Scholar
Thorpe, W. H. (1954). The process of song learning in the chaffinch, as studied by means of the sound spectrograph. Nature, 173, 465.Google Scholar
Thurman, T. J. & Seymoure, B. M. (2015). A bird’s eye view of two mimetic butterflies: coloration matches predator’s sensitivity. Journal of Zoology, doi:10.1111/jzo.12305.Google Scholar
Timberlake, W. & Lucas, G. A. (1989). Behavior systems and learning: From misbehavior to general principles. In Contemporary Learning Theories: Instrumental Conditioning Theory and the Impact of Biological Constraints on Learning, ed. Klein, S. B. & Mowrer, R. R., pp. 237–75. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Tinbergen, N. (1951). The Study of Instinct. Oxford: Clarendon Press.Google Scholar
Tinbergen, N. (1952). Derived activities: Their causation, biological significance, origin and emancipation during evolution. Quarterly Review of Biology, 27, 132.Google Scholar
Tinbergen, N. (1953). The Herring Gull’s World; a Study of the Social Behaviour of Birds. London: Collins.Google Scholar
Tinbergen, N. (1959). Comparative studies of the behaviour of gulls (Laridae): a progress report. Behaviour, 15, 170.Google Scholar
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410–33.Google Scholar
Tinbergen, N. (1965). Animal Behavior. New York: Time-Life Books.Google Scholar
Toates, F. M. (1980). Animal Behaviour: A Systems Approach. New York: Wiley.Google Scholar
Tobias, J. A. & Seddon, N. (2009). Signal jamming mediates sexual conflict in a duetting bird. Current Biology, 19, 577–82.Google Scholar
Tooby, J. & Cosmides, L. (1990). The past explains the present: Emotional adaptations and the structure of ancestral environments. Ethology and Sociobiology, 11, 375424.Google Scholar
Towers, S. (1987). Mimicry as a communicative process: Historical views and contemporary implications. Unpublished manuscript.Google Scholar
Trainor, L. J. (2015). The origins of music in auditory scene analysis and the roles of evolution and culture in musical creation. Philosophical Transactions of the Royal Society B, 370: 20140089.Google Scholar
Trivers, R. L. (1972). Parental investment and sexual selection. In Sexual Selection and the Descent of Man, ed. Campbell, B., pp. 136–79. Chicago: Aldine.Google Scholar
Trivers, R. L. (1974). Parent-offspring conflict. American Zoologist, 14, 249–64.Google Scholar
Turner, G. F. & Huntingford, F. A. (1986). A problem for game theory analysis: Assessment and intention in male mouthbrooder contests. Animal Behaviour, 34, 961–70.Google Scholar
Tyack, P. L. (1997). New directions in research on cetacean sonar. In Communication. Perspectives in Ethology, 12, ed. Owings, D. H., Beecher, M. D. & Thompson, N. S., New York: Plenum Press.Google Scholar
von Uexkull, J. (1909/1985). Environment (Umwelt) and inner world of animals (English translation). In Foundations of Comparative Ethology, ed. Burghardt, G. M., pp. 222–45. New York: Van Nostrand Reinhold Co.Google Scholar
Van Kampen, H. S. & Bolhuis, J. J. (1993). Interaction between auditory and visual learning during filial imprinting. Animal Behaviour, 45, 623–5.Google Scholar
Van Roo, B. L., Ketterson, E. D. & Sharp, P. J. (2003). Testosterone and prolactin in two songbirds that differ in paternal care: the blue-headed vireo and the red-eyed vireo. Hormones and Behavior, 44,435–41.Google Scholar
Van Valen, L. (1973). Body size and numbers of plants and animals. Evolution, 27, 2735.Google Scholar
Veldink, C. (1989). The honey-bee language controversy. Interdisciplinary Science Reviews, 14, 166–75.Google Scholar
Vend, F. (1977). A case of convergence in vocal signals between marmosets and birds. American Naturalist, 111, 777–82.Google Scholar
Vettin, J. & Todt, D. (2004). Laughter in conversation: features of occurrence and acoustic structure. Journal of Nonverbal Behavior, 28, 93115.Google Scholar
Vieth, W., Curio, E. & Ernst, U. (1980). The adaptive significance of avian mobbing: III. Cultural transmission of enemy recognition in blackbirds: Cross-species tutoring and properties of learning. Animal Behaviour, 28, 1217–29.Google Scholar
Volman, S. F. (1993). Development of neural selectivity for birdsong during vocal learning. Journal of Neuroscience, 13, 4737–47.Google Scholar
Von Frisch, K. (1967). The Dance Language and Orientation of Bees. Cambridge, MA: Harvard University Press.Google Scholar
Vos, D. R. (1994). Sex recognition in zebra finch males results from early experience. Behaviour, 128, 114.Google Scholar
Vukovic, J., Feinberg, D. R., Jones, B. C., DeBruine, L. M., Welling, L. L. M., Little, A. C. & Smith, F. G. (2008). Self-rated attractiveness predicts individual differences in women’s preferences for masculine men’s voices. Personality and Individual Differences, 45, 451–6.Google Scholar
Waas, J. R. (1991). Do little blue penguins signal their intentions during aggressive interactions with strangers? Animal Behaviour, 41, 375–82.Google Scholar
Wagner, R. H. (1993). The pursuit of extra-pair copulations by female birds: a new hypothesis of colony formation. Journal of Theoretical Biology, 163, 333–6.Google Scholar
Waring, G. H. (1970). Sound communications of black-tailed, white-tailed, and Gunnison’s prairie dogs. American Midland Naturalist, 83, 167–85.Google Scholar
Waser, P. M. & Brown, C. H. (1986). Habitat acoustics and primate communication. American Journal of Primatology, 10, 135–54.Google Scholar
Waser, P. M. & Waser, M. S. (1977). Experimental studies of primate vocalization: specializations for long-distance propagation. Zeitschrift für Tierpsychologie, 43, 239–63.Google Scholar
Wasserman, F. E. (1977). Intraspecific acoustical interference in the white-throated sparrow, (Zonotrichia albicollis). Animal Behaviour, 25, 949–52.Google Scholar
Watterson, T. & Riccillo, S. C. (1983). Vocal suppression as a neonatal response to auditory stimuli. Journal of Auditory Research, 23, 205–14.Google Scholar
Weary, D. W. & Kramer, D. L. (1995). Response of eastern chipmunks to conspecific alarm calls. Animal Behaviour, 49, 8193.Google Scholar
Weeden, J. S. & Falls, J. B. (1959). Differential responses of male ovenbirds to recorded songs of neighboring and more distant individuals. Auk, 76, 343–51.Google Scholar
Weishampel, D. B. (1981). Acoustic analyses of potential vocalizations in lambeosaurine dinosaurs (Reptilia:Ornithischia). Paleobiology, 7, 252–61.Google Scholar
Wells, P. H. & Wenner, A. (1973). Do bees have a language? Nature, 241, 171–4.Google Scholar
Wenner, A. (1967). Honeybees: do they use the distance information contained in their dance maneuver? Science, 155, 847–9.Google Scholar
West, M. J. & King, A. P. (1985). Learning by performing: An ecological theme for the study of vocal learning. In Issues in the Ecological Study of Learning. Resources for Ecological Psychology, ed. Johnston, T. D. & Pietrewicz, A. T., pp. 245–72. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
West, M. J. & King, A. P. (1990). Mozart’s starling. American Scientist, 78, 106–14.Google Scholar
West, M. & King, A. (1996). Eco-gen-actics: a systems approach to the ontogeny of avian communication. In The Evolution and Ecology of Vocal Behavior in Birds, ed. Kroodsma, D. K. & Miller, E. H., pp. 2038. Ithaca: Cornell University Press.Google Scholar
West, M. J., King, A. P. & Freeberg, T. M. (1994). The nature and nurture of neo-phenotypes: A case history. In Behavioral Mechanisms in Evolutionary Ecology, ed. Real, L. A., pp. 238–57. Chicago: University of Chicago Press.Google Scholar
West, M. J., King, A. P. & Freeberg, T. M. (1997). Building a social agenda for the study of bird song. In Social Influences on Vocal Development, ed. Snowdon, C. T. & Hausberger, M., pp. 4156. Cambridge: Cambridge University Press.Google Scholar
West-Eberhard, M. J. (1979). Sexual selection, social competition, and evolution. Proceedings of the American Philosophical Society, 123, 222–34.Google Scholar
Whalen, P. J. & Kleck, R. E. (2008). The shape of faces (to come). Nature Neuroscience, 11, 739–40.Google Scholar
Wheatcroft, D. (2015). Repetition rate of calls used in multiple contexts communicates presence of predators to nestlings and adult birds. Animal Behaviour, 103, 3544.Google Scholar
Wheeler, B. C. & Fischer, J. (2012). Functionally referential signals: a promising paradigm whose time has passed. Evolutionary Anthropology, 21, 115205.Google Scholar
Wickler, W. (1965). Mimicry and the evolution of animal communication. Nature, 208, 519–21.Google Scholar
Wickler, W. (1968). Mimicry in Plants and Animals. New York: McGraw-Hill.Google Scholar
Wiley, R. H. (1975). Multidimensional variation in an avian display: implications for social communication. Science, 190, 482–3.Google Scholar
Wiley, R. H. (1983). The evolution of communication: Information and manipulation. In Animal Behaviour, Vol. 2: Communication, ed. Halliday, T. R. & Slater, P. J. B., pp. 156–89. Oxford: Blackwell Scientific Publications.Google Scholar
Wiley, R. H. & Richards, D. G. (1978). Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology, 3, 6994.Google Scholar
Wiley, R. H. & Richards, D. G. (1982). Adaptations for acoustic communication in birds: sound transmission and signal detection. In Acoustic Communication in Birds, 1, ed. Kroodsma, D. E. & Miller, E. H., pp. 131–70. New York: Academic Press.Google Scholar
Williams, G. C. (1966). Adaptation and Natural Selection. Princeton: Princeton University Press.Google Scholar
Williams, H. & Nottebohm, F. (1985). Auditory responses in avian vocal motor neurons: a motor theory for song perception in birds. Science, 229, 279–82.Google Scholar
Wilson, E. O. (1975). Sociobiology, the New Synthesis. Cambridge: Belknap.Google Scholar
Wilson, E. O. (1994). Naturalist. Washington: Island Press.Google Scholar
Wingfield, J. C. & Hahn, T. (1994). Testosterone and territorial behavior in sedentary and migratory sparrows. Animal Behaviour, 47, 7789.Google Scholar
Wise, R. A. (1987). Sensorimotor modulation and the variable action pattern (VAP): Toward a noncircular definition of drive and motivation. Psychobiology, 15, 720.Google Scholar
Wolf, M., Sander van Doorn, G., Leimar, O. & Weissing, F. J. (2007). Life history trade-offs favours the evolution of animal personalities. Nature, 447, 581–4.Google Scholar
Wood, P. A., de Bie, J. & Clarke, J. A. (2014). Behavioural and physiological responses of domestic dogs (Canis familiaris) to agonistic growls from conspecifics. Applied Animal Behaviour, 161, 105–12. doi:10.1371/j. applanim.2014.10.004.Google Scholar
Wynne-Edwards, V. C. (1962). Animal Dispersion in Relation to Social Behaviour. New York: Hafner.Google Scholar
Yanai, I. & Lercher, M. (2016). The Society of Genes. Cambridge, MA: Harvard University Press.Google Scholar
Young, J. Z. (1954). Memory, heredity, and information. In Evolution as a Process, ed. Huxley, J., Hardy, A. C. & Ford, E. B., pp. 281–99. London: Allen & Unwin.Google Scholar
Yu, C-H., Dang, Y., Zhou, Z., Wu, C., Zhao, F., Sachs, M. S. & Liu, Y. (2015). Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Molecular Cell, 59, 744–54.Google Scholar
Zahavi, A. (1975). Mate selection – a selection for a handicap. Journal of Theoretical Biology, 53, 205–14.Google Scholar
Zahavi, A. (1977). Reliability in communication systems and the evolution of altruism. In Evolutionary Ecology, ed. Stonehouse, B. & Perrins, C., pp. 253–60. London: MacMillan Press.Google Scholar
Zahavi, A. (1982). The pattern of vocal signals and the information they convey. Behaviour, 80, 18.Google Scholar
Zahavi, A. (1987). The theory of signal selection and some of its implications. In International Symposium of Biological Evolution, ed. Delfino, V. P., pp. 305–27. Bari: Adriatic Editrice.Google Scholar
Zahavi, A. (1991). On the definition of sexual selection, Fisher’s model, and the evolution of waste and of signals in general. Animal Behaviour, 42, 501–3.Google Scholar
Zajonc, R. B. (1980). Feeling and thinking: Preferences need no inferences. American Psychologist, 35, 151–75.Google Scholar
Zann, R. (1990). Song and call learning in wild zebra finches in south-east Australia. Animal Behaviour, 40, 811–28.Google Scholar
Zentner, M., Grandjean, D. & Scherer, K. R. (2008). Emotions evoked by music: characterization, classification, and measurement. Emotion, 8, 494521.Google Scholar
Zuk, M. (1994). Immunology and the evolution of behavior. In Behavioral Mechanisms in Evolutionary Ecology, ed. Real, L. A., pp. 354–68. Chicago: University of Chicago Press.Google Scholar
Zuk, M. & Rotenberry, J. T. (2006). Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biology Letters, 2, 521–4.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Eugene S. Morton, Smithsonian Institution, Washington DC
  • Book: Animal Vocal Communication
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781107280519.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Eugene S. Morton, Smithsonian Institution, Washington DC
  • Book: Animal Vocal Communication
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781107280519.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Eugene S. Morton, Smithsonian Institution, Washington DC
  • Book: Animal Vocal Communication
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781107280519.008
Available formats
×