Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T07:27:47.270Z Has data issue: false hasContentIssue false

TcNST2 encodes a Golgi-localized UDP-galactose transporter in Trypanosoma cruzi

Published online by Cambridge University Press:  21 June 2019

Elizabeth C. Rodrigues
Affiliation:
Departament of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo 05508-900, SP, Brazil
Patricia Mörking
Affiliation:
Institute Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, PR, Brasil
Jaqueline O. Rosa
Affiliation:
Institute Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, PR, Brasil
Bruno A. A. Romagnoli
Affiliation:
Institute Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, PR, Brasil
Beatriz G. Guimarães
Affiliation:
Institute Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, PR, Brasil
Priscila M. Hiraiwa
Affiliation:
Institute Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, PR, Brasil
Amanda Klinke
Affiliation:
Institute Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, PR, Brasil
Alessandra M. de Aguiar
Affiliation:
Institute Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, PR, Brasil
Crisciele Kuligovski
Affiliation:
Institute Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, PR, Brasil
Samuel Goldenberg
Affiliation:
Institute Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, PR, Brasil
Augusto S. P. Ramos*
Affiliation:
Institute Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, PR, Brasil
*
Author for correspondence: Augusto S. P. Ramos, E-mail: augusto.ramos@fiocruz.br

Abstract

Survival and infectivity of trypanosomatids rely on cell-surface and secreted glycoconjugates, many of which contain a variable number of galactose residues. Incorporation of galactose to proteins and lipids occurs along the secretory pathway from UDP-galactose (UDP-Gal). Before being used in glycosylation reactions, however, this activated sugar donor must first be transported across the endoplasmic reticulum and Golgi membranes by a specific nucleotide sugar transporter (NST). In this study, we identified an UDP-Gal transporter (named TcNST2 and encoded by the TcCLB.504085.60 gene) from Trypanosoma cruzi, the etiological agent of Chagas disease. TcNST2 was identified by heterologous expression of selected putative nucleotide sugar transporters in a mutant Chinese Hamster Ovary cell line. TcNST2 mRNA levels were detected in all T. cruzi life-cycle forms, with an increase in expression in axenic amastigotes. Confocal microscope analysis indicated that the transporter is specifically localized to the Golgi apparatus. A three-dimensional model of TcNST2 suggested an overall structural conservation as compared with members of the metabolite transporter superfamily and also suggested specific features that could be related to its activity. The identification of this transporter is an important step toward a better understanding of glycoconjugate biosynthesis and the role NSTs play in this process in trypanosomatids.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, S, Richardson, JM, Mehlert, A and Ferguson, MAJ (2013) Structure of a complex phosphoglycan epitope from gp72 of Trypanosoma cruzi. Journal of Biological Chemistry 288, 1109311105.Google Scholar
Almeida, IC, Milani, SR, Gorin, PA and Travassos, LR (1991) Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. Journal of Immunology (Baltimore, Md.: 1950) 146, 23942400.Google Scholar
Almeida, IC, Ferguson, MA, Schenkman, S and Travassos, LR (1994) Lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. The Biochemical Journal 304(Pt 3), 793802.Google Scholar
Alves, LR and Goldenberg, S (2016) RNA-binding proteins related to stress response and differentiation in protozoa. World Journal of Biological Chemistry 7, 78.Google Scholar
Baptista, CG, Rodrigues, EC, Morking, P, Klinke, A, Zardo, ML, Soares, MJ, de Aguiar, AM, Goldenberg, S and Ramos, ASP (2015) Identification of a Golgi-localized UDP-N-acetylglucosamine transporter in Trypanosoma cruzi. BMC Microbiology 15, 269.Google Scholar
Batista, M, Marchini, FK, Celedon, PA, Fragoso, SP, Probst, CM, Preti, H, Ozaki, LS, Buck, GA, Goldenberg, S and Krieger, MA (2010) A high-throughput cloning system for reverse genetics in Trypanosoma cruzi. BMC Microbiology 10, 259.Google Scholar
Batista, CM, Kalb, LC, Moreira, CM, Batista, GT, Eger, I and Soares, MJ (2013) Identification and subcellular localization of TcHIP, a putative Golgi zDHHC palmitoyl transferase of Trypanosoma cruzi. Experimental Parasitology 134, 5260.Google Scholar
Brener, Z (1973) Biology of Trypanosoma cruzi. Annual Review of Microbiology 27, 347382.Google Scholar
Buscaglia, CA, Campo, VA, Frasch, AC and Di Noia, JM (2006) Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nature Reviews Microbiology 4, 229236.Google Scholar
Caffaro, CE and Hirschberg, CB (2006) Nucleotide sugar transporters of the Golgi apparatus: from basic science to diseases. Accounts of Chemical Research 39, 805812.Google Scholar
Caffaro, CE, Hirschberg, CB and Berninsone, PM (2006) Independent and simultaneous translocation of two substrates by a nucleotide sugar transporter. Proceedings of the National Academy of Sciences of the United States of America 103, 1617616181.Google Scholar
Caffaro, CE, Luhn, K, Bakker, H, Vestweber, D, Samuelson, J, Berninsone, P and Hirschberg, CB (2008) A single Caenorhabditis elegans Golgi apparatus-type transporter of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine. Biochemistry 47, 43374344.Google Scholar
Camargo (1964) Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Revista do Instituto de Medicina Tropical de São Paulo 6, 93100.Google Scholar
Capul, AA, Barron, T, Dobson, DE, Turco, SJ and Beverley, SM (2007) Two functionally divergent UDP-Gal nucleotide sugar transporters participate in phosphoglycan synthesis in Leishmania major. The Journal of Biological Chemistry 282, 1400614017.Google Scholar
Contreras, VT, Salles, JM, Thomas, N, Morel, CM and Goldenberg, S (1985) In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Molecular and Biochemical Parasitology 16, 315327.Google Scholar
Dc-Rubin, SSC and Schenkman, S (2012) T rypanosoma cruzi trans-sialidase as a multifunctional enzyme in Chagas’ disease. Cellular Microbiology 14, 15221530.Google Scholar
de Lederkremer, RM and Agusti, R (2009) Glycobiology of Trypanosoma cruzi. Advances in Carbohydrate Chemistry and Biochemistry 62, 311366.Google Scholar
De Pablos, LM and Osuna, A (2012) Multigene families in trypanosoma cruzi and their role in infectivity. Infection and Immunity 80, 22582264.Google Scholar
Deutscher, SL and Hirschberg, CB (1986) Mechanism of galactosylation in the Golgi apparatus. A Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes. The Journal of Biological Chemistry 261, 96100.Google Scholar
Eckhardt, M, Gotza, B and Gerardy-Schahn, R (1999) Membrane topology of the mammalian CMP-sialic acid transporter. Journal of Biological Chemistry 274, 87798787.Google Scholar
Elias, MC, Marques-Porto, R, Freymüller, E and Schenkman, S (2001) Transcription rate modulation through the Trypanosoma cruzi life cycle occurs in parallel with changes in nuclear organisation. Molecular and Biochemical Parasitology 112, 7990.Google Scholar
Ferreira, LRP, Dossin, FdM, Ramos, TC, Freymüller, E and Schenkman, S (2008) Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis. Anais da Academia Brasileira de Ciencias 80, 157166.Google Scholar
Gazzinelli, RT, Pereira, ME, Romanha, A, Gazzinelli, G and Brener, Z (1991) Direct lysis of Trypanosoma cruzi: a novel effector mechanism of protection mediated by human anti-gal antibodies. Parasite Immunology 13, 345356.Google Scholar
Heise, N, Singh, D, van der Wel, H, Sassi, SO, Johnson, JM, Feasley, CL, Koeller, CM, Previato, JO, Mendonca-Previato, L and West, CM (2009) Molecular analysis of a UDP-GlcNAc:polypeptide alpha-N-acetylglucosaminyltransferase implicated in the initiation of mucin-type O-glycosylation in Trypanosoma cruzi. Glycobiology 19, 918933.Google Scholar
Koeller, CM, van der Wel, H, Feasley, CL, Abreu, F, da Rocha, JDB, Montalvão, F, Fampa, P, Dos Reis, FCG, Atella, GC, Souto-Padrón, T, West, CM and Heise, N (2014) Golgi UDP-GlcNAc:polypeptide O-α-N-Acetyl-d-glucosaminyltransferase 2 (TcOGNT2) regulates trypomastigote production and function in Trypanosoma cruzi. Eukaryotic Cell 13, 13121327.Google Scholar
Kyte, J and Doolittle, RF (1982) A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157, 105132.Google Scholar
Liu, L and Hirschberg, CB (2012) Developmental diseases caused by impaired nucleotide sugar transporters. Glycoconjugate Journal 30, 510.Google Scholar
Liu, L, Xu, YX, Caradonna, KL, Kruzel, EK, Burleigh, BA, Bangs, JD and Hirschberg, CB (2013) Inhibition of nucleotide sugar transport in Trypanosoma brucei alters surface glycosylation. Journal of Biological Chemistry 288, 1059910615.Google Scholar
Lu, HY and Buck, GA (1991) Expression of an exogenous gene in Trypanosoma cruzi epimastigotes. Molecular and Biochemical Parasitology 44, 109114.Google Scholar
MacRae, JI, Obado, SO, Turnock, DC, Roper, JR, Kierans, M, Kelly, JM and Ferguson, MA (2006) The suppression of galactose metabolism in Trypanosoma cruzi epimastigotes causes changes in cell surface molecular architecture and cell morphology. Molecular and Biochemical Parasitology 147, 126136.Google Scholar
Mucci, J, Lantos, AB, Buscaglia, CA, Leguizamón, MS and Campetella, O (2017) The trypanosoma cruzi surface, a nanoscale patchwork quilt. Trends in Parasitology 33, 102112.Google Scholar
Parker, JL and Newstead, S (2017) Structural basis of nucleotide sugar transport across the Golgi membrane. Nature 551, 521524.Google Scholar
Pfaffl, MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45.Google Scholar
Pingel, S and Duszenko, M (1992) Identification of two distinct galactosyltransferase activities acting on the variant surface glycoprotein of Trypanosoma brucei. The Biochemical Journal 283(Pt 2), 479485.Google Scholar
Pingel, S, Rheinweiler, U, Kolb, V and Duszenko, M (1999) Purification and characterization of an alpha-galactosyltransferase from Trypanosoma brucei. The Biochemical Journal 338(Pt 2), 545551.Google Scholar
Previato, JO, Sola-Penna, M, Agrellos, OA, Jones, C, Oeltmann, T, Travassos, LR and Mendonca-Previato, L (1998) Biosynthesis of O-N-acetylglucosamine-linked glycans in Trypanosoma cruzi. Characterization of the novel uridine diphospho-N-acetylglucosamine:polypeptide N-acetylglucosaminyltransferase-catalyzing formation of N-acetylglucosamine alpha1-->O-threonine. Journal of Biological Chemistry 273, 1498214988.O-threonine.+Journal+of+Biological+Chemistry+273,+14982–14988.>Google Scholar
Ramasamy, R and Field, MC (2012) Terminal galactosylation of glycoconjugates in Plasmodium falciparum asexual blood stages and Trypanosoma brucei bloodstream trypomastigotes. Experimental Parasitology 130, 314320.Google Scholar
Reddy, A, Cho, J, Ling, S, Reddy, V, Shlykov, M and Saier, MH (2014) Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins. Journal of Molecular Microbiology and Biotechnology 24, 161190.Google Scholar
Rodrigues, JCF, Godinho, JLP and de Souza, W (2014) Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure. In Santos A, Branquinha M, d’Avila-Levy C, Kneipp L and Sodré C (eds), Proteins and Proteomics of Leishmania and Trypanosoma. Subcellular Biochemistry, vol. 74. Dordrecht: Springer. doi: 10.1007/978-94-007-7305-9_1.Google Scholar
Schenkman, S, Ferguson, MA, Heise, N, de Almeida, ML, Mortara, RA and Yoshida, N (1993) Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Molecular and Biochemical Parasitology 59, 293303.Google Scholar
Segawa, H, Kawakita, M and Ishida, N (2002) Human and Drosophila UDP-galactose transporters transport UDP-N-acetylgalactosamine in addition to UDP-galactose. European Journal of Biochemistry 269, 128138.Google Scholar
Sizova, OV, Ross, AJ, Ivanova, IA, Borodkin, VS, Ferguson, MAJ and Nikolaev, AV (2011) Probing elongating and branching β- d -galactosyltransferase activities in Leishmania parasites by making use of synthetic phosphoglycans. ACS Chemical Biology 6, 648657.Google Scholar
Smircich, P, Eastman, G, Bispo, S, Duhagon, MA, Guerra-Slompo, EP, Garat, B, Goldenberg, S, Munroe, DJ, Dallagiovanna, B, Holetz, F and Sotelo-Silveira, JR (2015) Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics 16, 443.Google Scholar
Souto-Padron, T, Almeida, IC, de Souza, W and Travassos, LR (1994) Distribution of alpha-galactosyl-containing epitopes on Trypanosoma cruzi trypomastigote and amastigote forms from infected Vero cells detected by Chagasic antibodies. The Journal of Eukaryotic Microbiology 41, 4754.Google Scholar
Stanley, P (1981) Selection of specific wheat germ agglutinin-resistant (WgaR) phenotypes from Chinese hamster ovary cell populations containing numerous lecR genotypes. Molecular and Cellular Biology 1, 687696.Google Scholar
Stokes, MJ, Guther, ML, Turnock, DC, Prescott, AR, Martin, KL, Alphey, MS and Ferguson, MA (2008) The synthesis of UDP-N-acetylglucosamine is essential for bloodstream form trypanosoma brucei in vitro and in vivo and UDP-N-acetylglucosamine starvation reveals a hierarchy in parasite protein glycosylation. Journal of Biological Chemistry 283, 1614716161.Google Scholar
Tomlinson, S, Vandekerckhove, F, Frevert, U and Nussenzweig, V (1995) The induction of Trypanosoma cruzi trypomastigote to amastigote transformation by low pH. Parasitology 110(Pt 5), 547554.Google Scholar
Turnock, DC and Ferguson, MA (2007) Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Eukaryotic Cell 6, 14501463.Google Scholar
World Health Organization (2017) Chagas disease (American trypanosomiasis). Geneva, Switzerland: World Health Organization. https://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis).Google Scholar
Yang, J, Yan, R, Roy, A, Xu, D, Poisson, J and Zhang, Y (2015) The I-TASSER Suite: protein structure and function prediction. Nature Methods 12, 78.Google Scholar
Zhang, Y and Skolnick, J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research 33, 23022309.Google Scholar
Supplementary material: File

Rodrigues et al. supplementary material

Table S1

Download Rodrigues et al. supplementary material(File)
File 14.9 KB