Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T01:38:05.091Z Has data issue: false hasContentIssue false

ON MINIMAL RESTRICTED ASYMPTOTIC BASES

Published online by Cambridge University Press:  06 October 2022

LINBO SHANG
Affiliation:
School of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, PR China e-mail: ashanglinbo@163.com
DENGRONG LING
Affiliation:
School of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, PR China e-mail: lingdengrong@163.com
MIN TANG*
Affiliation:
School of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, PR China
*
Rights & Permissions [Opens in a new window]

Abstract

Let $h \geq 2$ be a positive integer. We introduce the concept of minimal restricted asymptotic bases and obtain some examples of minimal restricted asymptotic bases of order h.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let $\mathbb {N}$ be the set of all nonnegative integers. For $A\subseteq \mathbb {N} $ , $h\geq 2$ , the h-fold sum of A, denoted $hA$ , is the set of sums of h not necessarily distinct elements of A and $h^{\wedge }A$ is the set of sums of h distinct elements of A. Let W be a nonempty subset of $\mathbb {N}$ . Denote by ${F}^{\ast }(W)$ the set of all finite, nonempty subsets of W. Given positive integers $g,h \geq 2$ , denote

$$ \begin{align*} A_g(W)=\bigg\{\sum_{f\in F}a_fg^f: 1\leq a_f \leq g-1,F \in {F}^{\ast}(W)\bigg\}. \end{align*} $$

For $i = 0,1,\ldots ,h-1$ , let $W_i^{(h)}=\{n\in \mathbb {N}: n\equiv i\pmod h\}$ and let

$$ \begin{align*} \mathcal{A}_{g,h}=A_{g}(W_0^{(h)})\cup A_{g}(W_1^{(h)})\cup \cdots \cup A_{g}(W_{h-1}^{(h)}). \end{align*} $$

The set A is an asymptotic basis of order h if $hA$ contains all sufficiently large integers. An asymptotic basis A of order h is minimal if $A\setminus \{a\}$ is not an asymptotic basis of order h for every nonnegative integer $a\in A$ . In 1974, Nathanson [Reference Nathanson4] first gave an explicit construction of a minimal asymptotic basis of order $2$ by using properties of binary representations. In 2010, Jańczak and Schoen [Reference Jańczak and Schoen3] constructed a dense minimal asymptotic basis of order two. Nathanson’s method has been widely used in the construction of minimal asymptotic bases. For related problems concerning minimal asymptotic bases, see [Reference Chen and Tang2, Reference Nathanson6, Reference Sun7]. The study of asymptotic bases and minimal asymptotic bases is closely related to the famous Erdős–Turán conjecture in additive number theory (see [Reference Alladi and Krantz1, Reference Nathanson, Chudnovsky and Chudnovsky5]).

It is natural to introduce a parallel concept of minimal restricted asymptotic bases. We call A a restricted asymptotic basis of order h if $h^{\wedge }A$ contains all sufficiently large integers. A restricted asymptotic basis A of order h is minimal if $A\setminus \{a\}$ is not a restricted asymptotic basis of order h for every nonnegative integer $a\in A$ . Does there exist a minimal restricted asymptotic basis of order h?

Our study begins with a result of Sun and Tao on minimal asymptotic bases.

Theorem 1.1 [Reference Sun and Tao8]

Let $h \geq 2$ . Then for any $g \geq h$ , the set $\mathcal {A}_{g,h}$ is a minimal asymptotic basis of order h.

We obtain the following results.

Proposition 1.2. For $k\geq 0$ , $g\geq 2$ :

  1. (1) $2g^{2k+1}\notin 2^{\wedge }\mathcal {A}_{g,2}$ ;

  2. (2) $2g^{3k+2}+1\notin 3^{\wedge }\mathcal {A}_{g,3}$ ;

  3. (3) $2\cdot 4^{4k+3}+5\notin 4^{\wedge }\mathcal {A}_{4,4}$ .

Theorem 1.3. Let $h\geq 4$ . Then for any $g\geq \max \{h,5\}$ , the set $\mathcal {A}_{g,h}$ is a minimal restricted asymptotic basis of order h.

2 A preliminary lemma

Lemma 2.1. Given positive integers $h\geq 2$ , $g\geq 5$ and $u\geq 2$ , let the g-adic representation of n be

$$ \begin{align*} n=e_{1}g^{i_1}+\cdots+e_{u-1}g^{i_{u-1}}+g^{i_{u}}, \end{align*} $$

where $0 \leq i_1<\cdots <i_{u}$ and $1\leq e_j\leq g-1$ for $j=1,\ldots ,u-1$ . Then $n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$ .

Proof. If $i_{u-1}<i_{u}-1$ , or if $i_{u-1}= i_{u}-1$ , $e_{u-1}\notin \{1,g-1\}$ , then because $g\geq 5$ and

$$ \begin{align*} n=e_{1}g^{i_1}+\cdots+e_{u-1}g^{i_{u-1}}+g^{i_u-1}+(g-1)g^{i_u-1}, \end{align*} $$

we see that $n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$ .

If $i_{u-1}= i_{u}-1$ and $e_{u-1}=1 $ , then because $g\geq 5$ and

$$ \begin{align*} n=e_{1}g^{i_1}+\cdots+e_{u-2}g^{i_{u-2}}+g^{i_{u}-1}+2g^{i_{u}-1}+(g-2)g^{i_{u}-1}, \end{align*} $$

we see that $n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$ .

If $i_{u-1}= i_{u}-1$ and $e_{u-1}=g-1 $ , then because $g\geq 5$ and

$$ \begin{align*} n=e_{1}g^{i_1} + \cdots +e_{u-2}g^{i_{u-2}} + g^{i_{u}-1}+(g-2)g^{i_{u}-1}+g^{i_u}, \end{align*} $$

again $n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$ .

This completes the proof of Lemma 2.1.

3 Proof of Proposition 1.2

(1) Assume that $2g^{2k+1}=a_0+a_1\in 2^{\wedge }\mathcal {A}_{g,2}$ with $0<a_0<a_1$ . Then $a_0<g^{2k+1}$ and $a_1<2g^{2k+1}$ . Since $a_0,a_1\in \mathcal {A}_{g,2}$ ,

$$ \begin{align*} a_0+a_1 &\leq (g-1)(g^0+\cdots+g^{2k-2}+g^{2k})+(g-1)(g^1+\cdots+g^{2k-3}+g^{2k-1})+g^{2k+1}\\ &<2g^{2k+1}, \end{align*} $$

which is a contradiction. Hence, $2g^{2k+1}\notin 2^{\wedge }\mathcal {A}_{g,2}\ \text{for all } g\geq 2$ .

(2) Assume that $2g^{3k+2}+1\in 3^{\wedge }\mathcal {A}_{g,3}$ . Write

(3.1) $$ \begin{align} 2g^{3k+2}+1=a_0+a_1+a_2,\quad a_0<a_1<a_2. \end{align} $$

Then $a_1<g^{3k+2}$ and $a_2<2g^{3k+2}$ . By (3.1), there exists at least one $a_i\in A_g(W_0^{(3)})$ .

If $a_2\notin A_g(W_{2}^{(3)})$ , then $a_2\leq (g-1)(g^1+g^4+\cdots +g^{3k+1}).$ Thus,

$$ \begin{align*} a_0+a_1+a_2&<(g-1)(g^0+g^3+\cdots+g^{3k})+ 2(g-1)(g^1+g^4+\cdots+g^{3k+1})\\ &< 2g^{3k+2}+1, \end{align*} $$

which is a contradiction.

If $a_2\in A_g(W_{2}^{(3)})$ , then $a_2\leq (g-1)(g^2+g^5+\cdots +g^{3k-1})+g^{3k+2}.$ Thus,

$$ \begin{align*} a_0+a_1+a_2 &\leq(g-1)(g^0+g^3+\cdots+g^{3k})+(g-1)(g^1+g^4+\cdots+g^{3k+1})\\ &\quad +(g-1)(g^2+g^5+\cdots+g^{3k-1})+g^{3k+2}\\ &<2g^{3k+2}+1, \end{align*} $$

which is a contradiction.

Hence, $2g^{3k+2}+1\notin 3^{\wedge }\mathcal {A}_{g,3}$ for all $g\geq 2$ .

(3) Assume that $2\cdot 4^{4k+3}+5\in 4^{\wedge }\mathcal {A}_{4,4}$ . Write

(3.2) $$ \begin{align} 2\cdot 4^{4k+3}+5=a_0+a_1+a_2+a_3, \quad a_0<a_1<a_2<a_3. \end{align} $$

Then $a_{3}<2\cdot 4^{4k+3}$ .

If $a_3\notin A_4(W_{3}^{(4)})$ , then $a_3\leq 3(4^2+4^6+\cdots +4^{4k+2})$ . Since $2\cdot 4^{4k+3}+5\equiv 5 \pmod {16},$ it follows from (3.2) that

$$ \begin{align*}a_0+a_1+a_2+a_3 &< 4^0+3\times(4^4+\cdots+4^{4k})+4^1+3\times(4^5+\cdots+4^{4k+1})\\ &\quad + 2\times3\times(4^2+4^6+\cdots+4^{4k+2})\\ &<2\cdot 4^{4k+3}+5, \end{align*} $$

which is a contradiction.

If $a_3\in A_4(W_{3}^{(4)})$ , then $a_3\leq 3(4^3+4^7+\cdots +4^{4k-1})+4^{4k+3}$ . If $a_2\geq 4^{4k+3}$ , then we have $a_2+a_3>2\cdot 4^{4k+3}+5$ , which is a contradiction. It follows that $a_2<4^{4k+3}$ . Again by (3.2) and $2\cdot 4^{4k+3}+5\equiv 5 \pmod {16},$

$$ \begin{align*}a_0+a_1+a_2+a_3 &\leq 4^0+3\times(4^4+\cdots+4^{4k})+4^1+3\times(4^5+\cdots+4^{4k+1})\\ &\quad + 3(4^2+4^6+\cdots+4^{4k+2})+3(4^3+4^7+\cdots+4^{4k-1})+4^{4k+3} \\ &< 2\cdot 4^{4k+3}+5, \end{align*} $$

which is a contradiction.

Hence, $2\cdot 4^{4k+3}+5\notin 4^{\wedge }\mathcal {A}_{4,4}$ .

This completes the proof of Proposition 1.2.

4 Proof of Theorem 1.3

By Theorem 1.1, $\mathcal {A}_{g,h}$ is a minimal asymptotic basis of order h. Thus, we only need to prove that $\mathcal {A}_{g,h}$ is a restricted asymptotic basis of order h.

Let $n\geq g^{(h-2)^2+1}$ and let the g-adic representation of n be

$$ \begin{align*} n=e_{1}g^{i_1}+\cdots+e_{t-1}g^{i_{t-1}}+e_tg^{i_{t}}, \end{align*} $$

where $0 \leq i_1<\cdots <i_{t}$ and $1\leq e_j\leq g-1$ for $j=1,\ldots ,t$ .

Case 1: $t=1$ . Then $i_1\geq h$ . Note that

$$ \begin{align*} n=(e_1-1)g^{i_1} + (g-1)g^{i_{1}-1} + \cdots + (g-1)g^{i_{1}-(h-1-\delta)} + g^{i_{1}-(h-1-\delta)}, \end{align*} $$

where $\delta =0$ if $e_1=1$ and otherwise $\delta =1$ . Hence, $n\in h^{\wedge }\mathcal {A}_{g,h}$ .

Case 2: $2 \leq t \leq h-2$ . If there exists a $k\in \{2,\ldots ,t\}$ such that $i_{k}-i_{k-1}>h-t$ , then

$$ \begin{align*} n=(e_k-1)g^{i_k}+(g-1)g^{i_{k}-1} + \cdots + (g-1)g^{i_{k}-(h-t-\delta)}+g^{i_{k}-(h-t-\delta)} + \sum_{j\in\{1,\ldots,t\} \setminus\{k\}}e_jg^{i_{j}}, \end{align*} $$

where $\delta =0$ if $e_k=1$ and otherwise $\delta =1$ . Hence, $n\in h^{\wedge }\mathcal {A}_{g,h}$ .

If $i_{k}-i_{k-1}\leq h-t$ for all $k\in \{2,\ldots ,t\}$ , then by $n\geq g^{(h-2)^2+1}$ , we have $i_1\geq h-t$ . Otherwise, if $i_1<h-t$ , then $i_t<t(h-t)$ , so that

$$ \begin{align*} n=e_{1}g^{i_1}+ \cdots + e_{t-1}g^{i_{t-1}}+e_tg^{i_{t}} < g^{i_t+1}<g^{(h-2)^2+1}, \end{align*} $$

which is a contradiction. Thus,

$$ \begin{align*} n=(e_1-1)g^{i_1} + ( g-1)g^{i_{1}-1} + \cdots + (g-1)g^{i_{1} - (h-t-\delta)} + g^{i_{1}-(h-t-\delta)} +\sum_{j\in\{2,\ldots,t\}}e_jg^{i_{j}}, \end{align*} $$

where $\delta =0$ if $e_1=1$ and otherwise $\delta =1$ . Hence, $n\in h^{\wedge }\mathcal {A}_{g,h}$ .

Case 3: $t = h-1$ . Then

$$ \begin{align*} n = e_1g^{i_1} + e_2g^{i_2} + \cdots + e_{h-1}g^{i_{h-1}}, \end{align*} $$

where $0 \leq i_1<\cdots <i_{h-1}$ , $1\leq e_j\leq g-1$ for $j=1,\ldots ,h-1$ .

If there exists a $k\in \{1,\ldots ,h-1\}$ such that $3 \leq e_k \leq g-1$ , then

$$ \begin{align*} n =\sum_{j\in I\backslash\{k\}}e_jg^{i_j}+g^{i_{k}} +(e_{k}-1) g^{i_{k}}, \end{align*} $$

where $I=\{1,\ldots ,h-1\}$ , and thus $n\in h^{\wedge }\mathcal {A}_{g,h}$ .

Now we consider what happens if $1\leq e_j\leq 2$ for $j=1,\ldots ,h-1$ .

(a) Suppose $e_{h-1}=1$ . Then by Lemma 2.1, $n\in h^{\wedge }\mathcal {A}_{g,h}$ .

(b) Suppose $e_1=e_2=\cdots =e_{h-2}=e_{h-1}=2$ .

If there exist $i_u<i_v $ with $1\leq u,v\leq h-1$ such that $i_u \equiv i_v \pmod h$ , then because

$$ \begin{align*} 2g^{i_{u}}+2g^{i_{v}}=(2g^{i_{u}}+g^{i_{v}})+g^{i_{v}-1}+(g-1)g^{i_{v}-1} \end{align*} $$

and $i_v \geq h$ , we have $n\in h^{\wedge }\mathcal {A}_{g,h}$ .

If $i_s\not \equiv i_t\pmod h$ for $1\leq s\neq t\leq h-1$ , then because $h\geq 4$ , there exist $i_v\ (\geq 1)$ , $i_u$ with $u,v \in \{1,2,\ldots ,h-1\}$ such that $i_v \equiv i_u+1 \pmod h$ . Since $g\geq 5$ and

$$ \begin{align*} 2g^{i_{u}}+2g^{i_{v}}=(2g^{i_{u}}+g^{i_{v}-1})+(g-1)g^{i_{v}-1}+g^{i_{v}}, \end{align*} $$

$n\in h^{\wedge }\mathcal {A}_{g,h}$ .

(c) Suppose $e_{h-1}=2$ , $e_{k}=1$ for some $k\in \{2,\ldots ,h-2\}$ . Then

$$ \begin{align*} n=\sum_{j\in K}e_jg^{i_{j}}+g^{i_k}+\sum_{j\in I}e_jg^{i_{j}}, \end{align*} $$

where $K=\{1,\ldots ,k-1\}$ and $I=\{k+1,\ldots ,h-1\}$ . By Lemma 2.1,

$$ \begin{align*} \sum\limits_{j\in K}e_jg^{i_{j}}+g^{i_k}\in (k+1)^{\wedge}\mathcal{A}_{g,h} \end{align*} $$

and so $n\in h^{\wedge }\mathcal {A}_{g,h}$ .

(d) Suppose $e_{h-1}=e_{h-2}=\cdots =e_2=2$ , $e_1=1$ . If $i_1>0$ , then

$$ \begin{align*} n=g^{i_1-1}+(g-1)g^{i_1-1}+\sum\limits_{j\in\{2,\ldots,h-1\}}2g^{i_{j}} \end{align*} $$

and so $n\in h^{\wedge }\mathcal {A}_{g,h}$ .

If $i_1=0$ , then

$$ \begin{align*} n=1+\sum\limits_{j\in\{2,\ldots,h-1\}}2g^{i_{j}}. \end{align*} $$

(d1) There exists a $k\in \{2,\ldots ,h-1\}$ such that $i_{k}\equiv 0\pmod h$ . Then

$$ \begin{align*} n=(1+g^{i_{k}})+g^{i_{k}-1}+(g-1)g^{i_{k}-1}+\sum_{j\in\{2,\ldots,h-1\}\setminus\{k\}}2g^{i_{j}}. \end{align*} $$

Thus, $n\in h^{\wedge }\mathcal {A}_{g,h}$ .

(d2) Suppose $i_{k}\not \equiv 0\pmod h$ for all $k\in \{2,\ldots ,h-1\}$ .

If $h\geq 5$ , then one of the following two cases must occur.

Case (i): There exist $i_u<i_v $ with $2\leq u,v\leq h-1$ such that $i_u \equiv i_v \pmod h$ . Since

$$ \begin{align*} 2g^{i_{u}}+2g^{i_{v}}=(2g^{i_{u}}+g^{i_{v}})+g^{i_{v}-1}+(g-1)g^{i_{v}-1} \end{align*} $$

and $i_v>h$ , we have

$$ \begin{align*} \sum\limits_{j\in\{2,\ldots,h-1\}}2g^{i_{j}}\in (h-1)^{\wedge}(\mathcal{A}_{g,h}\backslash \{1\}). \end{align*} $$

Thus, $n \in h^{\wedge }\mathcal {A}_{g,h}$ .

Case (ii): $i_s\not \equiv i_t\pmod h$ for $2\leq s\neq t\leq h-1$ . Then there exist $i_v\ (\geq 1)$ , $i_u$ for some $u,v \in \{2,\ldots ,h-1\}$ such that $i_v \equiv i_u+1 \pmod h$ . Because $g\geq 5$ and

$$ \begin{align*} 2g^{i_{u}}+2g^{i_{v}}=(2g^{i_{u}}+g^{i_{v}-1})+(g-1)g^{i_{v}-1}+g^{i_{v}}, \end{align*} $$

we have

$$ \begin{align*} \sum\limits_{j\in\{2,\ldots,h-1\}}2g^{i_{j}}\in (h-1)^{\wedge}(\mathcal{A}_{g,h}\backslash \{1\}). \end{align*} $$

Thus, $n \in h^{\wedge }\mathcal {A}_{g,h}$ .

Now suppose $h=4$ . Since $i_2,i_3\not \equiv 0\pmod 4$ , there is one further case in addition to (i) and (ii), namely, $\{i_2\pmod 4, i_3\pmod 4\}=\{1\pmod 4, 3\pmod 4\}$ . We may assume that $i_{2}\equiv 1\pmod 4$ . Because $g\geq 5$ and

$$ \begin{align*} n=(1+g^{i_{2}-1})+(g-1)g^{i_{2}-1}+g^{i_{2}}+2g^{i_{3}},\\[-18pt] \end{align*} $$

we have $n\in 4^{\wedge }\mathcal {A}_{g,4}$ .

Case 4: $t \geq h$ .

Write $I=\{i_{1},\ldots ,i_{t}\}$ . Since $\lvert I\rvert \geq h$ , it is possible to write I as a union of h nonempty sets $I_{1},\ldots ,I_{h}$ , where each $I_{j}$ is a subset of some $W^{(h)}_{k}$ . It follows that $n \in h^{\wedge }\mathcal {A}_{g,h}$ .

This completes the proof of Theorem 1.3.

Footnotes

This work was supported by the National Natural Science Foundation of China (Grant No. 11971033), Top Talents Project of Anhui Department of Education (Grant No. gxbjZD05) and Key Project of Anhui Department of Education (Grant No. KJ2021A0099).

References

Alladi, K. and Krantz, S., ‘Reflections on Paul Erdős on his birth centenary’, Notices Amer. Math. Soc. 62 (2015), 121143.Google Scholar
Chen, Y. G. and Tang, M., ‘On a problem of Nathanson’, Acta Arith. 185 (2018), 275280.10.4064/aa171031-26-4CrossRefGoogle Scholar
Jańczak, M. and Schoen, T., ‘Dense minimal asymptotic bases of order two’, J. Number Theory 130 (2010), 580585.10.1016/j.jnt.2009.09.010CrossRefGoogle Scholar
Nathanson, M. B., ‘Minimal bases and maximal nonbases in additive number theory’, J. Number Theory 6 (1974), 324333.10.1016/0022-314X(74)90028-6CrossRefGoogle Scholar
Nathanson, M. B., ‘Cassels bases’, in: Additive Number Theory (eds. Chudnovsky, D. and Chudnovsky, G.) (Springer, New York, 2010), 259285.10.1007/978-0-387-68361-4_19CrossRefGoogle Scholar
Nathanson, M. B., ‘A new class of minimal asymptotic bases’, Preprint, 2022, arXiv:2006.14562v2.CrossRefGoogle Scholar
Sun, C. F., ‘On a problem of Nathanson on minimal asymptotic bases’, J. Number Theory 218 (2021), 152160.10.1016/j.jnt.2020.07.014CrossRefGoogle Scholar
Sun, C. F. and Tao, T. T., ‘On $g$ -adic minimal asymptotic bases of order $h$ ’, Int. J. Number Theory 15 (2019), 389406.10.1142/S1793042119500209CrossRefGoogle Scholar