Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T20:46:49.125Z Has data issue: false hasContentIssue false

4 - Neurobiology of Disaster Exposure

Fear, Anxiety, Trauma, and Resilience

from Part II - Foundations of Disaster Psychiatry

Published online by Cambridge University Press:  02 June 2017

Robert J. Ursano
Affiliation:
Uniformed Services University
Carol S. Fullerton
Affiliation:
Uniformed Services University of the Health Sciences, Maryland
Lars Weisaeth
Affiliation:
Universitetet i Oslo
Beverley Raphael
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Admon, R., Milad, M. R., & Hendler, T. (2013). A causal model of post-traumatic stress disorder: Disentangling predisposed from acquired neural abnormalities. Trends in Cognitive Sciences, 17, 337347.CrossRefGoogle ScholarPubMed
Amos, T., Stein, D. J., & Ipser, J. C. (2014). Pharmacological interventions for preventing post-traumatic stress disorder (PTSD). Cochrane Database of Systematic Reviews, 8, Cd006239.Google Scholar
Ashley-Koch, A. E., Garrett, M. E., Gibson, J., Liu, Y., Dennis, M. F., Kimbrel, N. A. et al. (2015). Genome-wide association study of posttraumatic stress disorder in a cohort of Iraq-Afghanistan era veterans. Journal of Affective Disordors, 184, 225234.CrossRefGoogle Scholar
Barsaglini, A., Sartori, G., Benetti, S., Pettersson-Yeo, W., & Mechelli, A. (2014). The effects of psychotherapy on brain function: A systematic and critical review. Progress in Neurobiology, 114, 114.Google Scholar
Boccia, M., D’Amico, S., Bianchini, F., Marano, A., Giannini, A. M., & Piccardi, L. (2016). Different neural modifications underpin PTSD after different traumatic events: An fMRI meta-analytic study. Brain Imaging and Behavior, 10, 226237.CrossRefGoogle ScholarPubMed
Bremner, J. D., Randall, P., Scott, T. M., Bronen, R. A., Seibyl, J. P., Southwick, S. M. et al. (1995). MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. American Journal of Psychiatry, 152, 973981.Google ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H. et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Chen, Y., Rex, C. S., Rice, C. J., Dube, C. M., Gall, C. M., Lynch, G. et al. (2010). Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proceedings of the National Academy of Sciences, 107, 1312313128.Google Scholar
Daniels, J. K., Frewen, P., Theberge, J., & Lanius, R. A. (2016). Structural brain aberrations associated with the dissociative subtype of post-traumatic stress disorder. Acta Psychiatrica Scandinavia, 133, 232240.CrossRefGoogle ScholarPubMed
Denson, T. F., Pedersen, W. C., Ronquillo, J., & Nandy, A. S. (2009). The angry brain: Neural correlates of anger, angry rumination, and aggressive personality. Journal of Cognitive Neuroscience, 21, 734744.Google Scholar
Department of Veterans Affairs/Department of Defense (2010). VA/DoD clinical practice guideline for the management of posttraumatic stress, version 2.0. Washington, DC: Veterans Health Administration, Department of Defense.Google Scholar
Enman, N. M., Sabban, E. L., McGonigle, P., & Van Bockstaele, E. J. (2015). Targeting the neuropeptide Y system in stress-related psychiatric disorders. Neurobiology of Stress, 1, 3343.CrossRefGoogle ScholarPubMed
Feder, A., Parides, M. K., Murrough, J. W., Perez, A. M., Morgan, J. E., Saxena, S. et al. (2014). Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: A randomized clinical trial. JAMA Psychiatry, 71, 681688.Google Scholar
Fitzgerald, P. J., Giustino, T. F., Seemann, J. R., & Maren, S. (2015). Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress. Proceedings of the National Academy of Sciences, 112, E3729E3737.CrossRefGoogle ScholarPubMed
Fletcher, S., Creamer, M., & Forbes, D. (2010). Preventing post traumatic stress disorder: Are drugs the answer? Australian and New Zealand Journal of Psychiatry, 44, 10641071.Google Scholar
Freedman, S. A., Brandes, D., Peri, T., & Shalev, A. (1999). Predictors of chronic post-traumatic stress disorder: A prospective study. British Journal of Psychiatry, 174, 353359.Google Scholar
Friedman, M. J., & Davidson, J. R. T. (2014). Pharmacotherapy for PTSD. In Friedman, M. J., Keane, T. M., & Resick, P. A. (Eds.), Handbook of PTSD: Science and practice, second edition (pp. 482501). New York: Guilford Press.Google Scholar
Galatzer-Levy, I. R., Steenkamp, M. M., Brown, A. D., Qian, M., Inslicht, S., Henn-Haase, C. et al. (2014). Cortisol response to an experimental stress paradigm prospectively predicts long-term distress and resilience trajectories in response to active police service. Journal of Psychiatric Research, 56, 3642.Google Scholar
Highland, K. B., Costanzo, M. E., Jovanovic, T., Norrholm, S. D., Ndiongue, R. B., Reinhardt, B. J. et al. (2015). Catecholamine responses to virtual combat: Implications for post-traumatic stress and dimensions of functioning. Frontiers in Psychology, 6, 256.Google Scholar
Honsberger, M. J., Taylor, J. R., & Corlett, P. R. (2015). Memories reactivated under ketamine are subsequently stronger: A potential pre-clinical behavioral model of psychosis. Schizophrenia Research, 164, 227233.CrossRefGoogle ScholarPubMed
Inslicht, S. S., Otte, C., McCaslin, S. E., Apfel, B. A., Henn-Haase, C., Metzler, T. et al. (2011). Cortisol awakening response prospectively predicts peritraumatic and acute stress reactions in police officers. Biological Psychiatry, 70, 10551062.CrossRefGoogle ScholarPubMed
Jetly, R., Heber, A., Fraser, G., & Boisvert, D. (2015). The efficacy of nabilone, a synthetic cannabinoid, in the treatment of PTSD-associated nightmares: A preliminary randomized, double-blind, placebo-controlled cross-over design study. Psychoneuroendocrinology, 51, 585588.Google Scholar
Kassem, M. S., Lagopoulos, J., Stait-Gardner, T., Price, W. S., Chohan, T. W., Arnold, J. C. et al. (2013). Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses. Molecular Neurobiology, 47, 645661.CrossRefGoogle ScholarPubMed
Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., Houshyar, S., Lipschitz, D., Krystal, J. H. et al. (2004). Social supports and serotonin transporter gene moderate depression in maltreated children. Proceedings of the National Academy of Sciences, 101, 1731617321.CrossRefGoogle ScholarPubMed
Kim, T. Y., Chung, H. G., Shin, H. S., Kim, S. J., Choi, J. H., Chung, M. Y. et al. (2013). Apolipoprotein E gene polymorphism, alcohol use, and their interactions in combat-related posttraumatic stress disorder. Depression and Anxiety, 30, 11941201.Google Scholar
Krystal, J. H., & Neumeister, A. (2009). Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Research, 1293, 1323.Google Scholar
Lanius, R. A., Vermetten, E., Loewenstein, R. J., Brand, B., Schmahl, C., Bremner, J. D. et al. (2010). Emotion modulation in PTSD: Clinical and neurobiological evidence for a dissociative subtype. American Journal of Psychiatry, 167, 640647.Google Scholar
LeDoux, J. E. (2014). Coming to terms with fear. Proceedings of the National Academy of Sciences, 111, 28712878.CrossRefGoogle ScholarPubMed
Liberzon, I., & Sripada, C. S. (2008). The functional neuroanatomy of PTSD: A critical review. Progressive Brain Research, 167, 151169.Google Scholar
Murrough, J. W., Henry, S., Hu, J., Gallezot, J. D., Planeta-Wilson, B., Neumaier, J. F. et al. (2011). Reduced ventral striatal/ventral pallidal serotonin1B receptor binding potential in major depressive disorder. Psychopharmacology, 213, 547553.CrossRefGoogle ScholarPubMed
Nash, M., Galatzer-Levy, I., Krystal, J. H., Duman, R., & Neumeister, A. (2014). Neurocircuitry and neuroplasticity in PTSD. In Friedman, M. J., Keane, T. M., & Resick, P. A. (Eds.), Handbook of PTSD: Science and practice (2nd ed., pp. 251274). New York: Guilford Press.Google Scholar
O’Doherty, D. C., Chitty, K. M., Saddiqui, S., Bennett, M. R., & Lagopoulos, J. (2015). A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Research, 232, 133.Google Scholar
Pervanidou, P., & Chrousos, G. P. (2010). Neuroendocrinology of post-traumatic stress disorder. Progress in Brain Research, 182, 149160.CrossRefGoogle ScholarPubMed
Petrakis, I. L., Desai, N., Gueorguieva, R., Arias, A., O’Brien, E., Jane, J. S. et al. (2016). Prazosin for veterans with posttraumatic stress disorder and comorbid alcohol dependence: A clinical trial. Alcoholism, Clinical and Experimental Research, 40, 178186.Google Scholar
Pietrzak, R. H., Henry, S., Southwick, S. M., Krystal, J. H., & Neumeister, A. (2013). Linking in vivo brain serotonin type 1B receptor density to phenotypic heterogeneity of posttraumatic stress symptomatology. Molecular Psychiatry, 18, 399401.CrossRefGoogle ScholarPubMed
Pietrzak, R. H., Huang, Y., Corsi-Travali, S., Zheng, M. Q., Lin, S. F., Henry, S. et al. (2014a). Cannabinoid type 1 receptor availability in the amygdala mediates threat processing in trauma survivors. Neuropsychopharmacology, 39, 25192528.CrossRefGoogle ScholarPubMed
Pietrzak, R. H., Naganawa, M., Huang, Y., Corsi-Travali, S., Zheng, M. Q., Stein, M. B. et al. (2014b). Association of in vivo kappa-opioid receptor availability and the transdiagnostic dimensional expression of trauma-related psychopathology. JAMA Psychiatry, 71, 12621270.Google Scholar
Pitman, R. K., Rasmusson, A. M., Koenen, K. C., Shin, L. M., Orr, S. P., Gilbertson, M. W. et al. (2012). Biological studies of post-traumatic stress disorder. Nature Reviews. Neuroscience, 13, 769787.CrossRefGoogle ScholarPubMed
Pole, N. (2007). The psychophysiology of posttraumatic stress disorder: A meta-analysis. Psychological Bulletin, 133, 725746.Google Scholar
Ragen, B. J., Seidel, J., Chollak, C., Pietrzak, R. H., & Neumeister, A. (2015). Investigational drugs under development for the treatment of PTSD. Expert Opinion on Investigational Drugs, 24, 659672.Google Scholar
Raskind, M. A., Peterson, K., Williams, T., Hoff, D. J., Hart, K., Holmes, H. et al. (2013). A trial of prazosin for combat trauma PTSD with nightmares in active-duty soldiers returned from Iraq and Afghanistan. American Journal of Psychiatry, 170, 10031010.CrossRefGoogle ScholarPubMed
Ravindran, L. N., & Stein, M. B. (2009). Pharmacotherapy of PTSD: Premises, principles, and priorities. Brain Research, 1293, 2439.Google Scholar
Sabban, E. L., Alaluf, L. G., & Serova, L. I. (2016). Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides, 56, 1924.Google Scholar
Schiller, D., Monfils, M. H., Raio, C. M., Johnson, D. C., Ledoux, J. E., & Phelps, E. A. (2010). Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 463, 4953.CrossRefGoogle ScholarPubMed
Seedat, S., Stein, D. J., & Carey, P. D. (2005). Post-traumatic stress disorder in women: Epidemiological and treatment issues. CNS Drugs, 19, 411427.Google Scholar
Sergio Tde, O., Spiacci, Jr., A., & Zangrossi, Jr., H. (2014). Effects of dorsal periaqueductal gray CRF1- and CRF2-receptor stimulation in animal models of panic. Psychoneuroendocrinology, 49, 321330.Google Scholar
Simpson, T. L., Malte, C. A., Dietel, B., Tell, D., Pocock, I., Lyons, R. et al. (2015). A pilot trial of prazosin, an alpha-1 adrenergic antagonist, for comorbid alcohol dependence and posttraumatic stress disorder. Alcoholism, Clinical and Experimental Research, 39, 808817.CrossRefGoogle ScholarPubMed
Smith, R. P., Katz, C. L., Charney, D. S., & Southwick, S. M. (2007). Neurobiology of disaster exposure: Fear, anxiety, trauma, and resilience. In Ursano, R. J., Fullerton, C. S., Weisaeth, L., & Raphael, B. (Eds.), Textbook of Disaster Psychiatry (pp. 97117). Cambridge: Cambridge University Press.Google Scholar
Southwick, S. M., Morgan, III, C. A., Charney, D. S., & High, J. R. (1999). Yohimbine use in a natural setting: Effects on posttraumatic stress disorder. Biological Psychiatry, 46, 442444.CrossRefGoogle Scholar
Stark, E. A., Parsons, C. E., Van Hartevelt, T. J., Charquero-Ballester, M., McManners, H., Ehlers, A. et al. (2015). Post-traumatic stress influences the brain even in the absence of symptoms: A systematic, quantitative meta-analysis of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 56, 207221.CrossRefGoogle ScholarPubMed
Steenen, S. A., van Wijk, A. J., van der Heijden, G. J., van Westrhenen, R., de Lange, J., & de Jongh, A. (2016). Propranolol for the treatment of anxiety disorders: Systematic review and meta-analysis. Journal of Psychopharmacology, 30, 128139.Google Scholar
Suliman, S., Seedat, S., Pingo, J., Sutherland, T., Zohar, J., & Stein, D. J. (2015). Escitalopram in the prevention of posttraumatic stress disorder: A pilot randomized controlled trial. BMC Psychiatry, 15, 24.CrossRefGoogle ScholarPubMed
Wingenfeld, K., Whooley, M. A., Neylan, T. C., Otte, C., & Cohen, B. E. (2015). Effect of current and lifetime posttraumatic stress disorder on 24-h urinary catecholamines and cortisol: Results from the Mind Your Heart Study. Psychoneuroendocrinology, 52, 8391.Google Scholar
Wolf, E. J., Mitchell, K. S., Koenen, K. C., & Miller, M. W. (2014). Combat exposure severity as a moderator of genetic and environmental liability to post-traumatic stress disorder. Psychological Medicine, 44, 14991509.CrossRefGoogle ScholarPubMed
Wood, N. E., Rosasco, M. L., Suris, A. M., Spring, J. D., Marin, M. F., Lasko, N. B. et al. (2015). Pharmacological blockade of memory reconsolidation in posttraumatic stress disorder: Three negative psychophysiological studies. Psychiatry Research, 225, 3139.Google Scholar
Wu, G., Feder, A., Cohen, H., Kim, J. J., Calderon, S., Charney, D. S. et al. (2013). Understanding resilience. Frontiers in Behavioral Neuroscience, 7, 10.Google Scholar
Yehuda, R., Golier, J. A., Bierer, L. M., Mikhno, A., Pratchett, L. C., Burton, C. L. et al. (2010). Hydrocortisone responsiveness in Gulf War veterans with PTSD: Effects on ACTH, declarative memory hippocampal [(18)F]FDG uptake on PET. Psychiatry Research, 184, 117127.Google Scholar
Yehuda, R., Koenen, K. C., Galea, S., & Flory, J. D. (2011). The role of genes in defining a molecular biology of PTSD. Disease Markers, 30, 6776.Google Scholar
Zohar, J., Yahalom, H., Kozlovsky, N., Cwikel-Hamzany, S., Matar, M. A., Kaplan, Z. et al. (2011). High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: Interplay between clinical and animal studies. European Neuropsychopharmacology, 21, 796809.Google Scholar
Zovkic, I. B., & Sweatt, J. D. (2013). Epigenetic mechanisms in learned fear: Implications for PTSD. Neuropsychopharmacology, 38, 7793.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×