Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T10:47:31.808Z Has data issue: false hasContentIssue false

Biofouling: an historic and contemporary review of its causes, consequences and control in drinking water distribution systems

Published online by Cambridge University Press:  27 March 2006

R. T. Bachmann
Affiliation:
Chemical and Process Engineering Department, Sheffield University, Sheffield, S1 3JD, UK
R. G. J. Edyvean
Affiliation:
Chemical and Process Engineering Department, Sheffield University, Sheffield, S1 3JD, UK

Abstract

Biofouling in water distribution systems has, arguably, affected our lives for more than 3500 years. It may be defined as the undesirable accumulation of biotic matter on a surface, which can cause odour and taste problems, the deterioration of pipe materials and fittings and result in the discoloration of water. Early efforts to combat these problems included the use of sedimentation tanks, disinfection by silver ionization and cleaning of the distribution network. At the turn of the nineteenth century, rapid sand filtration and water disinfection became widely used and helped to reduce the organic and bacterial load in drinking water. A better understanding of the role and causes of biofouling in water distribution systems resulted in various legislations, which in turn have been a driving factor for improving or developing new water treatment methods, pipe materials, analytical techniques, etc. However, increasing requirements on water quality in the late twentieth century made water treatment and specific anti-corrosion and/or microbial control regimens insufficient as a means of solving the transportation problem owing to the heterogeneity of pipe materials and contamination from outside the distribution system. Furthermore, as drinking water passes through the mains it undergoes a series of quality changes owing to interactions with the pipe walls, bacteria and the sediment phase.

This review emphasizes the extent to which biofouling depends on interactions between microorganisms and (1) nutrients, (2) environmental conditions (temperature), (3) physicochemical processes (sedimentation, corrosion, disinfection) and (4) pipe material. A good knowledge of these complex interactions is necessary for implementing a successful biofouling control strategy.

Type
Review Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)