Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T00:32:27.368Z Has data issue: false hasContentIssue false

Stress and microbiota: Between biology and psychology

Published online by Cambridge University Press:  15 July 2019

Rasmus Hoffmann Birk*
Affiliation:
Department of Global Health and Social Medicine, King's College London, London WC2B 4BG, United Kingdom. Rasmus.birk@kcl.ac.ukRasmusbirk.org

Abstract

This comment expands on Hooks et al.’s criticism of the problematic and overly general uses of “stress” within the microbiota-gut-brain field. The comment concludes that, for the microbiota-gut-brain field (as for other fields drawing on “stress”), much work is yet to be done in terms of how we explore and understand biology vis-à-vis psychology.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ait-Belgnaoui, A., Colom, A., Braniste, V., Ramalho, L., Marrot, A., Cartier, C., Houdeau, E., Theodorou, V. & Tompkins, T. (2014) Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterology and Motility 26(4):510–20. https://doi.org/10.1111/nmo.12295.Google Scholar
Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E., Fioramonti, J., Bueno, L. & Theodorou, V. (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37(11):1885–95. Available at: https://doi.org/10.1016/j.psyneuen.2012.03.024.Google Scholar
Bailey, M. T., Dowd, S. E., Galley, J. D., Hufnagle, A. R., Allen, R. G. & Lyte, M. (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity 25(3):397407. Available at: https://doi.org/10.1016/j.bbi.2010.10.023.Google Scholar
Crumeyrolle-Arias, M., Jaglin, M., Bruneau, A., Vancassel, S., Cardona, A., Daugé, V., Naudon, L. & Rabot, S. (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207–17. Available at: https://doi.org/10.1016/j.psyneuen.2014.01.014.Google Scholar
Koolhaas, J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flügge, G., Korte, S. M., Meerlo, P., Murison, R., Olivier, B., Palanza, P., Richter-Levin, G., Sgoifo, A., Steimer, T., Stiedl, O., van Dijk, G., Wöhr, M. & Fuchs, E. (2011) Stress revisited: A critical evaluation of the stress concept. Neuroscience & Biobehavioral Reviews 35(5): 1291–301. Available at: https://doi.org/10.1016/j.neubiorev.2011.02.003.Google Scholar
McEwen, B. S. (1998) Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences 840(1):3344. Available at: https://doi.org/10.1111/j.1749-6632.1998.tb09546.x.Google Scholar
McEwen, B. S. & Seeman, T. (2006) Protective and damaging effects of mediators of stress: Elaborating and testing the concepts of allostasis and allostatic load. Annals of the New York Academy of Sciences 896(1):3047. Available at: https://doi.org/10.1111/j.1749-6632.1999.tb08103.x.Google Scholar
Meyer, V. J., Lee, Y., Böttger, C., Leonbacher, U., Allison, A. L. & Shirtcliff, E. A. (2015) Experience, cortisol reactivity, and the coordination of emotional responses to skydiving. Frontiers in Human Neuroscience 9:138. Available at: https://doi.org/10.3389/fnhum.2015.00138.Google Scholar
Rees, T., Bosch, T. & Douglas, A. E. (2018) How the microbiome challenges our concept of self. PLoS Biology 16:e2005358. Available at: https://doi.org/10.1371/journal.pbio.2005358.Google Scholar
Rose, N. & Abi-Rached, J. (2013) Neuro: The new brain sciences and the management of the mind. Princeton University Press.Google Scholar
Sorge, R. E., Martin, L. J., Isbester, K. A., Sotocinal, S. G., Rosen, S., Tuttle, A. H., Wieskopf, J. S., Acland, E. L., Dokova, A., Kadoura, B., Leger, P., Mapplebeck, J. C. S., McPhail, M., Delaney, A., Wigerblad, G., Schumann, A. P., Quinn, T., Frasnelli, J., Svensson, C. I., Sternberg, W. F. & Mogil, J. S. (2014) Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nature Methods 11(6):629–32. Available at: https://doi.org/10.1038/nmeth.2935.Google Scholar
Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.-N., Kubo, C. & Koga, Y. (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. Journal of Physiology 558(1):263–75. Available at: https://doi.org/10.1113/jphysiol.2004.063388.Google Scholar