Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T14:35:30.340Z Has data issue: false hasContentIssue false

Synchrotron small-angle x-ray scattering study of linear low-density polyethylene under uniaxial deformation

Published online by Cambridge University Press:  11 April 2012

Angel Romo-Uribe*
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Físicas, Universidad Nacional Autonoma de Mexico, Cuernavaca Mor. 62210, Mexico
Angel Manzur
Affiliation:
Departamento de Física, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico D. F. 09340, Mexico
Roberto Olayo
Affiliation:
Departamento de Física, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico D. F. 09340, Mexico
*
a)Address all correspondence to this author. e-mail: aromo-uribe@fis.unam.mx
Get access

Abstract

Synchrotron time-resolved small-angle x-ray scattering studies were carried out on extruded sheets of linear low-density polyethylene (LLDPE) under tension. Stress–strain traces obtained simultaneously exhibited a double yield behavior. LLDPE initially exhibited lamellar morphology with a long period of 21.5 nm. Initial deformation increased the long period due to flow-induced crystallization. Between the first and second yield points, the lamellae were axially deformed by a slip process toward the tensile direction; off-meridional scattering was produced. In the second yield point region, there was a gradual rotation and thinning of the off-meridional scattering indicating that a shear process was destroying the lamellae. Simultaneously, amorphous scattering arise due to microvoids. Second, a weak meridional scattering was also produced. Strikingly, further deformation in the second yield region (SYR) increased the meridional long period suggesting a recrystallization process. From the cold-drawing region the long period decreased monotonically. The results suggest a melting and recrystallization process in the SYR.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.O’Connell, P.A. and McKenna, G.B.: Yield and Crazing in Polymers. Encyclopedia of Polymer Science and Technology (John Wiley & Sons, 2004).Google Scholar
2.Ward, I.M.: Mechanical Properties of Solid Polymers, 2nd ed. (Wiley, New York, 1990).Google Scholar
3.Schultz, J.: Polymer Materials Science (Prentice-Hall, Englewood Cliffs, 1974).Google Scholar
4.Popli, R. and Mandelkern, L.: Influence of structural and morphological factors on the mechanical properties of the polyethylenes. J. Polym. Sci., Part B: Polym. Phys. 25, 441 (1987).CrossRefGoogle Scholar
5.Seguela, R. and Rietsch, F.: Double yield point in polyethylene under tensile loading. J. Mater. Sci. Lett. 9, 46 (1990).CrossRefGoogle Scholar
6.Brooks, N.W., Ducket, R.A., and Ward, I.M.: Investigation into double yield points in polyethylene. Polymer 33, 1872 (1992).CrossRefGoogle Scholar
7.Séguéla, R. and Darras, O.: Phenomenological aspects of the double yield of polyethylene and related copolymers under tensile loading. J. Mater. Sci. 29, 5342 (1994).CrossRefGoogle Scholar
8.Lucas, J.C., Failla, M.D., Smith, F.L., Mandelkern, L., and Peacock, A.: The double yield in the tensile deformation of the polyethylenes. J. Polym Eng Sci. 35, 1117 (1995).CrossRefGoogle Scholar
9.Feijoo, J.L., Sanchez, J.J., and Muller, A.: The phenomenon of double yielding in blown polyethylene films. Polym. Bull. 39, 125 (1997).CrossRefGoogle Scholar
10.Gaucher-Miri, V. and Séguéla, R.: Tensile yield polyethylene and related copolymers: Mechanical and structural evidences of two thermally activated processes. Macromolecules 30(4), 1158 (1997).CrossRefGoogle Scholar
11.Schrauwen, B.A.G., Janssen, R.P.M., Govaert, L.E., and Maijer, H.E.H.: Intrinsic deformation behavior of semicrystalline polymers. Macromolecules 37, 6069 (2004).CrossRefGoogle Scholar
12.Balsamo, V. and Müller, A.: The phenomenon of double yielding under tension in low-density polyethylene, linear low-density polyethylene and their blends. J. Mater. Sci. Lett. 12, 1457 (1993).CrossRefGoogle Scholar
13.Plaza, A.R., Ramos, E., Manzur, A., Olayo, R., and Escobar, A.: Double yield points in triblends of LDPE, LLDPE and EPDM. J. Mater. Sci. 32, 549 (1997).CrossRefGoogle Scholar
14.Brooks, N.W., Unwin, A.P., Duckett, R.A., and Ward, I.M.: Double yield points in polyethylene: Structural changes under tensile deformation. J. Macromol Sci Part B Phys. 34, 29 (1995).CrossRefGoogle Scholar
15.Brooks, N.W., Unwin, A.P., Ducket, R.A., and Ward, I.M.: Temperature and strain rate dependence of yield strain and deformation behavior in polyethylene. J. Polym. Sci., Part B: Polym. Phys. 35(4), 545 (1997).3.0.CO;2-P>CrossRefGoogle Scholar
16.Butler, M.F., Donald, A.M., and Ryan, A.J.: Time resolved simultaneous small- and wide-angle x-ray scattering during polyethylene deformation: 1. Cold drawing of ethylene- α-olefin copolymers. Polymer 38(22), 5521 (1997).CrossRefGoogle Scholar
17.Muramatsu, S. and Lando, J.B.: Double yield points in poly(tetramethylene terephthalate) and its copolymers under tensile loading. Polym. Eng. Sci. 35, 1077 (1995).CrossRefGoogle Scholar
18.Shan, G-F., Yang, W., Xie, B-h., Li, Z-m., Chen, J., and Yang, M-b.: Double yielding behaviors of polyamide 6 and glass bead filled polyamide 6 composites. Polym. Test. 24, 704 (2005).CrossRefGoogle Scholar
19.Shan, G-F., Yang, W., Yang, M-b., Xie, B-h., Li, Z-m., and Feng, J-m.: Effect of crystallinity level on the double yielding behavior of polyamide 6. Polym. Test. 25, 452 (2006).CrossRefGoogle Scholar
20.Shibaya, M., Ishihara, H., Yamashita, K., Yoshihara, N., and Nonomura, C.: Effect of mold temperature on structure and property variations of PBT injection moldings in the thickness direction. Int. Polym. Process. XIX, 303 (2004).CrossRefGoogle Scholar
21.Pan, J.L., Li, Z.M., Ning, N.Y., and Yang, S.Y.: Double yielding in injection-molded polycarbonate/polyethylene blends: Composition dependence. Macromol. Mater. Eng. 291, 477 (2006).CrossRefGoogle Scholar
22.Adhikari, R., Buschnakowski, M., Henning, S., Goerlitz, S., Huy, T.A., Lebek, W., Godehardt, R., Michler, G.H., Lach, R., Geiger, K., and Knoll, K.: Double yielding in a styrene/butadiene star block copolymer. Macromol. Rapid Commun. 25, 653 (2004).CrossRefGoogle Scholar
23.Yamada, K. and Takayanagi, M.: Superstructural description of deformation process in uniaxial extension of preoriented isotactic polypropylene. J. Appl. Polym. Sci. 24, 781 (1979).CrossRefGoogle Scholar
24.Spathis, G. and Kontou, E.: Nonlinear viscoelastic model for the prediction of double yielding in a linear low-density polyethylene film. J. Appl. Polym. Sci. 91(6), 3519 (2004).CrossRefGoogle Scholar
25.Manzur, A. and Rivas, J.I.: Crystallinity variations in the double yield region of polyethylene. J. Appl. Polym. Sci. 104, 3103 (2007).CrossRefGoogle Scholar
26.Manzur, A.: Strain rate effect on crystallinity variations in the double yield region of polyethylene. J. Appl. Polym. Sci. 108, 1574 (2008).CrossRefGoogle Scholar
27.Agarwal, P.K., Somani, R.H., Weng, W., Mehta, A., Yang, L., Ran, S., Liu, L., and Hsiao, B.S.: Shear-induced crystallization in novel long chain branched polypropylenes by in situ rheo-SAXS and -WAXD. Macromolecules 36, 5226 (2003).CrossRefGoogle Scholar
28.Butler, M.F., Donald, A.M., Bras, W., Mant, G.R., Derbyshire, G.E., and Ryan, A.J.: A real-time simultaneous small- and wide-angle x-ray scattering study of in-situ deformation of isotropic polyethylene. Macromolecules 28, 6383 (1995).CrossRefGoogle Scholar
29.Butler, M.F., Donald, A.M., and Ryan, A.J.: Time resolved simultaneous small- and wide-angle x-ray scattering during polyethylene deformation—II. Cold drawing of linear polyethylene. Polymer 39(1), 39 (1998).CrossRefGoogle Scholar
30.Wang, K.H., Chung, I.J., Jang, M.C., Keum, J.K., and Song, H.Y.: Deformation behavior of polyethylene/silicate nanocomposites as studied by real-time wide-angle x-ray scattering. Macromolecules 35, 5529 (2002).CrossRefGoogle Scholar
31.Medellin-Rodríguez, F.J., Hsiao, B.S., Chu, B., and Fu, B.X.: Uniaxial deformation of nylon 6–clay nanocomposites by in situ synchrotron x-ray measurements. J. Macromol. Sci. Phys. 42, 201 (2003).CrossRefGoogle Scholar
32.Liu, L., Hsiao, B.S., Fu, X., Ran, X., Toki, S., Chu, B., Tsou, A.H., and Agarwal, P.: Structure changes during uniaxial deformation of ethylene-based semicrystalline ethylene-propylene copolymer. 1. SAXS study. Macromolecules 36, 1920 (2003).CrossRefGoogle Scholar
33.Mitchell, G.R., Pople, J.A., Andresen, E.M., and Brownsey, P.G.: Time-resolved x-ray rheology applied to crystallizable polymers. Adv. X-ray Anal. 37, (1997).Google Scholar
34.Romo-Uribe, A., Mather, P.T., Chaffee, K., and Han, C.D.: Molecular and textural ordering of thermotropic polymers in shear flow, in Morphological Conrol in Multiphase Polymer Mixtures, edited by Briber, R.M., Han, C.C., and. Peiffer, D.G. (Mater. Res. Soc. Symp. Proc. 461, Pittsburgh, PA, 1997), p. 63.Google Scholar
35.Hamley, I.W., Castelletto, V., Mykhaylyk, O.O., and Gleeson, A.J.: Mesoscopic crystallography of shear-aligned soft materials. J. Appl. Crystallogr. 37, 341 (2004).CrossRefGoogle Scholar
36.Caputo, F.E., Burghardt, W.R., Krishnan, K., Bates, F.S., and Lodge, T.P.: Time-resolved small-angle x-ray scattering measurements of a polymer bicontinuous microemulsion structure factor under shear. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 66, 0414014 (2002).CrossRefGoogle ScholarPubMed
37.Soubiran, L., Staples, E., Tucker, I., and Penfold, J.: Effects of shear on the lamellar phase of diakyl cationic surfactant. Langmuir. 17, 7988 (2001).CrossRefGoogle Scholar
38.Wunderlich, B.: Macromolecular Physics, Vol. I (Academic Press, New York, 1973).Google Scholar
39.Galeski, A., Bartczak, Z., Argon, A.S., and Cohen, R.E.: Morphological alterations during texture-producing plastic plane strain compression of high-density polyethylene. Macromolecules 25, 5705 (1992).CrossRefGoogle Scholar
40.Wilke, W., Bratrich, M., Heise, B., and Peichel, G.: The change of the superstructure of semicrystalline polymers during deformation: Results from small-angle scattering with synchrotron radiation. Polym. Adv. Technol. 3, 179 (1992).CrossRefGoogle Scholar
41.Androsch, R., Stribeck, N., Lupke, T., and Funari, S.S.: Investigation of the deformation of homogeneous poly(ethylene-co-1-octane) by wide- and small-angle x-ray scattering using synchrotron radiation. J. Poly. Sci. Poly. Phys. 40, 1919 (2002).CrossRefGoogle Scholar
42.Alexander, L.E.: X-ray Diffraction Methods in Polymer Science (John Wiley & Sons, London, 1969). p. 93.Google Scholar
43.Kennedy, M.A., Peacock, A.J., and Mandelkern, L.: Tensile properties of crystalline polymers: Linear polyethylene. Macromolecules 27, 5297 (1994).CrossRefGoogle Scholar
44.Manzur, A.J.: Evolution of thermal properties of polyethylene in the double yield region after uniaxial deformation. J. Macromol. Sci. Part B Phys. 51(3), 400 (2012).CrossRefGoogle Scholar