Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T17:01:06.467Z Has data issue: false hasContentIssue false

Megalakes in the Sahara? A Review

Published online by Cambridge University Press:  14 June 2018

J. Quade*
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
E. Dente
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel Geological Survey of Israel, Jerusalem 95501, Israel
M. Armon
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
Y. Ben Dor
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
E. Morin
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
O. Adam
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
Y. Enzel
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
*
*Corresponding author at: Department of Geosciences, University of Arizona, 1040 East Fourth Street, Tucson, Arizona 85721, USA. E-mail address: quadej@email.arizona.edu (J. Quade).

Abstract

The Sahara was wetter and greener during multiple interglacial periods of the Quaternary, when some have suggested it featured very large (mega) lakes, ranging in surface area from 30,000 to 350,000 km2. In this paper, we review the physical and biological evidence for these large lakes, especially during the African Humid Period (AHP) 11–5 ka. Megalake systems from around the world provide a checklist of diagnostic features, such as multiple well-defined shoreline benches, wave-rounded beach gravels where coarse material is present, landscape smoothing by lacustrine sediment, large-scale deltaic deposits, and in places, tufas encrusting shorelines. Our survey reveals no clear evidence of these features in the Sahara, except in the Chad basin. Hydrologic modeling of the proposed megalakes requires mean annual rainfall ≥1.2 m/yr and a northward displacement of tropical rainfall belts by ≥1000 km. Such a profound displacement is not supported by other paleo-climate proxies and comprehensive climate models, challenging the existence of megalakes in the Sahara. Rather than megalakes, isolated wetlands and small lakes are more consistent with the Sahelo-Sudanian paleoenvironment that prevailed in the Sahara during the AHP. A pale-green and discontinuously wet Sahara is the likelier context for human migrations out of Africa during the late Quaternary.

Type
Review Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abafoni, J.D., Arabi, A.S., Funtua, I.I., 2014. Luminescence chronology of the Bama Beach Ridge, Chad Basin, north-eastern Nigeria. Quaternary International 338, 4250.Google Scholar
Adam, O., Bischoff, T., Schneider, T., 2016. Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. Journal of Climate 29, 32193230.Google Scholar
Adams, K.D., Wesnousky, S.G., 1998. Shoreline processes and the age of Lake Lahontan highstand, Nevada and California. Geological Society of America Bulletin 110, 13181332.Google Scholar
Agassiz, A., 1876. Hydrological sketch of Lake Titicaca. Proceedings of the American Academy of Science 3, 283.Google Scholar
Amante, C., Eakins, B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. http://dx.doi.org/10.7289/V5C8276M.Google Scholar
Armitage, S.J., Bristow, C.S., Drake, N.A., 2015. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad. Proceedings of the National Academy of Sciences USA 112, 85438548.Google Scholar
Armitage, S.J., Drake, N.A., Stokes, S., El-Hawat, A., Salem, M.J., White, K., Tunrer, P., McLaren, S.J., 2007. Multiple phases of North African humidity recorded in lacustrine sediment from the Fezzan Basin, Libyan Sahara. Quaternary Geochronology 2, 181186.Google Scholar
Ashley, G.M., Tactikos, J.C., Owen, R.B., 2008. Hominid use of springs and wetlands: paleoclimate and archeological remains at Olduvai Gorge (1.79-1.74 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology 272, 116.Google Scholar
Barth, C., Boyle, D.P., Hatchett, B.J., Bassett, S.D., Garner, C.B., Adams, K.D., 2016. Late Pleistocene climate inferences from a water balance model of Jakes Valley, Nevada (USA). Journal of Paleolimnology 56, 109122.Google Scholar
Bills, B.G., Adams, K.D., Wesnousky, S.G., 2007. Viscosity structure of the crust and upper mantle in western Nevada from isostatic rebound patterns of the late Pleistocene Lake Lahontan high shoreline. Journal of Geophysical Research 112, B06405.Google Scholar
Blum, M., Kocurek, G., Deynoux, M., Swezey, C., Lancaster, N., Price, D.M., Pion, J.-C., 1998. Quaternary wadi, lacustrine, aeolian depositional cycles and sequences, Chott Rharsa basin, southern Tunisia. In: Alsharan, A.S., Glennie, K.W., Whittle, G.L., Kendall, C.G.S.C. (Eds.), Quaternary Deserts and Climatic Change. Balkema, Rotterdam, pp. 539552.Google Scholar
Bouchette, F., Schuster, M., Gienne, M., Denamiel, J.F., Roquim, C., Moussa, C., Marseleix, A., Duringer, P., 2010. Hydrodynamics and Holocene Lake Megachad. Quaternary Research 73, 226236.Google Scholar
Braconnot, P., Harrison, S.P., Kageyama, M., Bartlein, P.J., Masson-Delmotte, V., Ade-Ouchi, A., Otto-Bliesner, B., Zhao, Y., 2012. Evaluation of climate models using palaeoclimatic data. Nature Climate Change 2, 417424.Google Scholar
Brooks, N., Drake, N.A., McLaren, S., White, K.H., 2003. Studies in geography, geomorphology, environment, and climate. In: Mattingley, D.J.M., Dore, J., Wilson, A.I. (Eds.), The Archeology of the Fezzan Vol. 1, Synthesis, Society for Libyan Studies, London, pp. 3774.Google Scholar
Burrough, S. L., Thomas, D. S.G., Bailey, R.M., 2009. Megalake in the Kalahari: a late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews 28, 13921411.Google Scholar
Causse, C., Ghaleb, B., Chkir, N., Zouari, K., Ouezdou, H.B., Mamou, A., 2003. Humidity changes in southern Tunisia during the late Pleistocene inferred from U-Th dating of mollusk shell. Applied Geochemistry 18, 16911703.Google Scholar
Chen, C., McGee, J., Quade, J., 2015. Mapping South American summer monsoon changes during Heinrich Event 1 and the LGM: insights from New Paleolake records from the Central Andes. American Geophysical Union, Fall Meeting, abstract PP33D-06.Google Scholar
Chiang, J.C.H., Friedman, A.R., 2012. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annual Review of Earth and Planetary Sciences 40, 383412.Google Scholar
Claussen, M., Dallmeyer, A., Bader, J., 2017. Theory and modeling of the African humid period and the green Sahara. In: Oxford Research Encyclopedia of Climate Science. http://dx.doi.org/10.1093/acrefore/9780190228620.013.532.Google Scholar
Claussen, M., Kubatzki, C., Brivkin, V., Ganpolski, A., Hoelzmann, P., Pachur, H.-J., 1999. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophysical Research Letters 26, 20372040.Google Scholar
Coe, M.T., 1997. Simulating continental surface waters: an application to Holocene northern Africa. Journal of Climate 10, 16801689.Google Scholar
Cohen, A.S., 2003. Paleolimnology: History and Evolution of Lake Systems. Oxford University Press, New York.Google Scholar
Cohen, T.J., Nanson, G.C., Jansen, J.D., Jones, B.G., Jacobs, Z., Treble, P., Price, D.M., et al., 2011. Continental aridification and the vanishing of Australia’s megalakes. Geology 39, 167170.Google Scholar
Conrad, G., 1969. L’évolution continentale, post-hercynienne, du Sahara algeérien. Zones arides, série géologie 10. Éditions du Centre national de la recherche scientifique, Paris.Google Scholar
Conrad, G., Lappartient, J.R., 1991. The appearance of Cardium fauna in the great lakes of the early Quaternary period in the Algerian central Desert. Journal of African Earth Sciences 12, 375382.Google Scholar
Coulthard, T.J., Ramirez, J.A., Barton, N., Rogerson, M., Brücher, T., 2013. Were rivers flowing across the Sahara during the last interglacial? Implications for human migration through Africa. PLoS ONE 8, e74834.Google Scholar
Cremaschi, M., Zerboni, A., Spötl, C., Felleti, F., 2010. The calcareous tufa in the Tadrart Acacus Mt. (SW Fezzan, Libya). An early Holocene palaeoclimate archive in the central Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology 287, 8194.Google Scholar
Drake, N., Blench, R.M., Armitage, S.J., Bristow, C.S., White, K.H., 2011. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proceedings of the National Academy of Sciences USA 108, 458462.Google Scholar
Drake, N., Bristow, C., 2006. Shorelines in the Sahara: geomorphological evidence for an enhanced monsoon from palaeolake Chad. The Holocene 16, 901911.Google Scholar
Edmunds, W.M., Wright, E.P., 1979. Groundwater recharge and palaeoclimate in the Sirte and Kufra basins, Libya. Journal of Hydrology 40, 215241.Google Scholar
Elsawwaf, M., Willems, P., Pagano, A., Berlamont, J., 2010. Evaporation estimates from Nasser Lake, Egypt, based on three floating station data and Bowen ratio energy budget. Theoretical and Applied Climatology 100, 439465.Google Scholar
Elsheikh, A., Abdelsalam, M.G., Mickus, K., 2011. Geology and geophysics of the West Nubian paleolake and the northern Darfur megalake (WNPL-NDML): implication for groundwater resources in Darfur, northwestern Sudan. Journal of African Earth Sciences 61, 8293.Google Scholar
Enzel, Y., Brown, W. J., Anderson, R. Y., McFadden, L. D., Wells, S. G., 1992. Short-duration Holocene lakes in the Mojave River drainage basin, southern California. Quaternary Research 38, 6073.Google Scholar
Enzel, Y., Kushnir, Y., Quade, J., 2015. Lacustrine-like marsh deposits in Arabia and the impact of the early-middle Holocene Indian and African summer monsoon rains. Global and Planetary Change 129, 6991.Google Scholar
Enzel, Y., Quade, J., Kushnir, Y., 2017. Reply to comment by M. Engel et al., Hydroclimatology and paleohydrology of Arabia: Assessing the magnitude of early-to-middle Holocene Indian and African monsoon impacts. Global and Planetary Change 148, 268271.Google Scholar
Enzel, Y., Wells, S.G., 1997. Extracting Holocene paleohydrology and paleoclimatology information from modern extreme flood events: an example from southern California. Geomorphology 19, 203226.Google Scholar
Fabre, J., Petit-Maire, N., 1988. Holocene climatic evolution at 22–23° N from two palaeolakes in the Taoudenni area (northern Mali). Palaeogeography, Palaeoclimatology, Palaeoecology 65, 133148.Google Scholar
Fontes, J.Ch., Gasse, F., 1991. Chronology of the major palaeohydrological events in NW Africa during the late Quaternary: PALHYDAF results. Hydrobiologia 214, 367372.Google Scholar
Forester, R.M., Carter, C., Quade, J., Smith, A.J., 2016. Aquifer and surface-water ostracodes in Quaternary paleowetland deposits of southern Nevada, USA. Hydrobiologia. http://dx.doi.org/10.1007/s10750-016-2966-5.Google Scholar
Gash, J.H.C., Wallace, J.S., Lloyd, C.R., Dolman, A.J., 1991. Measurements of evaporation from the fallow Sahelian savannah at the start of the dry season. Quarterly Journal of the Royal Meteorological Society 117, 749760.Google Scholar
Gaven, C., Hillaire-Marcel, C., Petiti-Maire, N., 1981. A Pleistocene lacustrine episode in southeastern Libya. Nature 90, 131133.Google Scholar
Ghienne, J.-F., Schuster, M., Bernard, A., Duringer, Ph., Brunet, M., 2002. The Holocene giant Lake Chad revealed by digital elevation models. Quaternary International 87, 8185.Google Scholar
Ghoneim, E., El-Baz, F., 2007. DEM-optical-radar data integration for the paleohydrological mapping of the northern Darfur, Sudan: implication for groundwater exploration. International Journal of Remote Sensing 28, 50015018.Google Scholar
Gilbert, G.K., 1890. Lake Bonneville. U.S. Geological Survey Monograph 1, U.S. Government Printing Office, Washington, DC.Google Scholar
Grunert, J., Baumhauer, R., Völkel, J., 1991. Lacustrine sediments and Holocene climates in the southern Sahara: the example of paleolakes in the Grand Erg of Bilma (Zoo Baba and Dibella, eastern Niger). Journal of African Earth Sciences 12, 133146.Google Scholar
Hastenrath, S.L., Kutzbach, J.E., 1983. Paleoclimate estimates from water and energy budgets of East African lakes. Quaternary Research 19, 141153.Google Scholar
Haynes, C.V. Jr., 1987. Curry Draw, Cochise County, Arizona: a late Quaternary stratigraphic record of Pleistocene extinction and paleo-Indian activities. In: Hill, M. (Ed.), Cordilleran Section of the Geological Society of America Centennial Field Guide No. 1. Geological Society of America, Boulder, CO, pp. 2328.Google Scholar
Haynes, C.V. Jr., Eyles, C.H., Pavlish, L.A., Ritchie, J.C., Rybak, M., 1989. Holocene palaeoecology of the eastern Sahara; Selima Oasis. Quaternary Science Reviews 8, 109136.Google Scholar
Haynes, C.V. Jr., Mead, A.R., 1982. Radiocarbon dating and paleoclimatic significance of subfossil Limicolaria . Quaternary Research 28, 8699.Google Scholar
Hély, C., Lézine, A.-M., ADP contributors. 2014. Holocene changes in African vegetation: trade-off between climate and water availability. Climate of the Past 10, 681686.Google Scholar
Hettner, A., 1889. Zweiter Bericht von Herrn Alfred Hettner uber siene Reisen in Peru and Bolivia. Verhandlungen der Gesellschaft fur Erdkunde zu Berlin, no. 6.Google Scholar
Hoelzmann, P., Gasse, F., Dupont, L. M., Salzmann, H., Staubwasser, M., Leuschner, D. C., Sirocko, F., 2004. Palaeoenvironmental changes in the arid and sub arid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present. In: Battarbee, R. W., Gasse, F., Stickley, C. E. (Eds.), Past Climate Variability through Europe and Africa. Springer, Dordrecht, Netherlands, pp. 219256.Google Scholar
Hoelzmann, P., Kruse, H-J., Rottinger, F., 2000. Precipitation estimates for the eastern Saharan paleomonsoon based on a water balance model of the west Nubian palaeolake basin. Global and Planetary Change Science 26, 105120.Google Scholar
Hollett, K. J., Danskin, W. R., McCaffrey, W. F., Walti, C.L., 1991. Geology and Water Resources of Owens Valley, California. U.S. Geological Survey Water Supply Paper 2370–B. U.S. Government Printing Office, Washington, DC.Google Scholar
Howell, P.P., Lock, M., Cobb, S., 1988. The Jonglei Canal: Impact and Opportunity. Cambridge University Press, Cambridge.Google Scholar
Hudson, A.M., Quade, J., 2013. J., Long-term east-west asymmetry in monsoon intensification on the Tibetan Plateau. Geology 41, 351354.Google Scholar
Hudson, A., Quade, J., Huth, T., Lei, G., Cheng, H., Edwards, R.L., Olsen, J.W, Zhang, H., 2015. Lake-level reconstruction for 12.8-2.3 ka of the Ngangla Ring Tso closed-basin lake system, southwest Tibetan Plateau. Quaternary Research 83, 6679.Google Scholar
Huth, T., Hudson, A.M., Quade, J., 2015. A paleohydrologic reconstruction of early Holocene climate from Baqan Tso in central Tibet. Quaternary Research 83, 8093.Google Scholar
Jolly, D., Prentice, I.C., Bonnefille, R., Ballouche, A., Bengo, M., Brenac, P., Buchet, G., et al., 1998. Biome reconstruction from pollen and plant macrofossil data for Africa and Arabian Peninsula at 0 to 6000 years. Journal of Biogeography 25, 10071027.Google Scholar
Joussaume, S., Taylor, K.E., Braconnot, P., MItchell, J.F.B., Kutzbach, J.E., Harrison, S.P., Prentice, I.C., et al., 1999. Monsoon changes for 6000 years ago: results of 18O modeling for the Paleoclimate Modeling Intercomparison Project (PMIP). Geophysical Research Letters 26, 859862.Google Scholar
Kaufman, A., Broecker, W.S., Ku, T.-L., Thurber, D.L., 1971. The status of U-series methods of mollusk dating. Geochimica et Cosmochimica Acta 35, 11551183.Google Scholar
Kendall, R.L., 1969. An ecological history of the Lake Victoria Basin. Ecological Monographs 39, 121176.Google Scholar
Kite, G.W., 1982. Analysis of Lake Victoria lake levels. Hydrological Sciences Bulletin 27, 99100.Google Scholar
Kröpelin, S., Vershuren, D., Lezine, A.-M., Eggermont, H., Coquyt, C., Francus, P., Cazet, J.-P., et al., 2008. Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320, 765768.Google Scholar
Kuper, R., Kröpelin, S., 2006. Climate-controlled Holocene occupation of the Sahara: motor of Africa’s evolution. Science 313, 803807.Google Scholar
Kutzbach, J., 1980. Estimates of past climate at paleolake Chad, North Africa, based on a hydrological and energy-balanced model. Quaternary Research 14, 210223.Google Scholar
Kutzbach, J.E., 1981. Monsoon climate of the early Holocene: climate experiment with the Earth’s orbital parameters for 9000 years ago. Science 278, 5961.Google Scholar
Kutzbach, J.E., Liu, Z., 1997. Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278, 440443.Google Scholar
Lartet, L., 1869. Essai sur la Geology de la Palestine et des Contrees Avoisinantes. Telles Que l’Egypte et l’Arabie, Comprenant les Observations Recuellies dans le Cours de l’Expedition du Duc de Luynes a la Mer Morte. Imprimerie de E. Martinet, Paris.Google Scholar
Lebatard, A.-E., Bourles, D.L., Braucher, R., Arnold, M., Duringer, P., Jolivet, M., Moussa, A., et al., 2010. Application of the authigenic 10Be/9Be dating method to continental sediments: reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin. Earth and Planetary Science Letters 297, 5770.Google Scholar
LeBlanc, M., Favreau, G., Maley, J., Nazoumou, Y., Leduc, C., Stagnitti, F., Van Oevelen, P.J., Delclaux, F., Lamoalle, J., 2006. Reconstruction of Megalake Chad using Shuttle Radar Topographic mission data. Palaeogeography, Palaeoclimatology, Palaeoecology 239, 1627.Google Scholar
Lézine, A.M., Hély, C., Grenier, C., Braconnot, P., 2011. Sahara and Sahel vulnerability to climate change, lessons from the Holocene hydrological data. Quaternary Science Reviews 30, 30013012.Google Scholar
Lifton, N. A., Jull, A. J., Quade, J., 2001. A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz. Geochimica et Cosmochimica Acta 65, 19531969.Google Scholar
Maduapuchi, C., Faye, S., Maloszewski, P., 2006. Isotope evidence of palaeorecharge and palaeoclimate in the confined aquifers of the Chad Basin, NE Nigeria. Science of the Total Environment 370, 467479.Google Scholar
McCauley, J.F., Schaber, G.G., Breed, C.S., Grolier, M. J., Haynes, C.V., Issawi, B., Elachi, C., Blom, R., 1982. Subsurface valleys and geoarchaeology of the eastern Sahara revealed by shuttle radar. Science 218, 10041020.Google Scholar
McHugh, W.P., Breed, C.S., Schaber, G.G., McCauley, J.F., Szabo, B.J., 1988. Acheulian sites along “radar rivers,” southern Egyptian Sahara. Journal of Field Archaeology 15, 361379.Google Scholar
Mifflin, M. D., Wheat, M. M., 1979. Pluvial Lakes and Estimated Pluvial Climates of Nevada. Nevada Bureau of Mines and Geology Bulletin 94. University of Nevada, Reno.Google Scholar
Minchin, J.B., 1882. Notes on a journey through part of the Andean tableland of Bolivia. Proceedings of the Royal Geographical Society 4, 671676.Google Scholar
Mischke, S., Ginat, H., Salem Al-Saqarat, B., Faershtein, G., Porat, N., Braun, P., Rech, J.A., 2017. Fossil-based reconstructions of ancient water bodies in the Levantine deserts. In: Enzel, Y., Bar-Yosef, O. (Eds.), Quaternary of the Levant: Environments, Climate Change, and Humans. Cambridge University Press, Cambridge, United Kingdom, pp. 381390.Google Scholar
Monteith, J.L., 1991. Weather and water in the Sudano-Sahelian zone. Soil water balances in the Sudano-Sahleian Zone. In: Proceedings of the Niamey Workshop, Niamey, Niger, February 1991. International Association of Hydrological Sciences Publ. No. 199, 11–29.Google Scholar
Nicholson, S.E., 2009. A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dynamics 32, 11551171.Google Scholar
Omar, M.H., El-Bakry, M.M., 1981. Estimation of evaporation from the lake of the Aswan high dam (Lake Nasser) based on measurements over the lake. Agricultural Meteorology 23, 293308.Google Scholar
Osborne, A. H., Vance, D., Rihling, E.J., Barton, N., Rogerson, M., Fello, N., 2008. A humid corridor across the Sahara for the migration of early humans out of Africa 120,000 years ago. Proceedings of the National Academy of Sciences USA 105, 1644416447.Google Scholar
Pachur, H.J., Hoelzmann, P., 1991. Paleoclimatic implications of late Quaternary lacustrine sediments in Western Nubia. Quaternary Research 36, 257276.Google Scholar
Pachur, H.J., Rottinger, F., 1997. Evidence for a large extended paleolake in the eastern Sahara as revealed by space borne radar lab images. Remote Sensing of the Environment 61, 437440.Google Scholar
Paillou, P., Schuster, M., Tooth, S., Farr, T., Rosenqvist, A., Lopez, S., Malezieux, J.-M., 2009. Mapping of a major paleodrainage system in eastern Libya using orbital imaging radar: the Kufrah River. Earth and Planetary Science Letters 277, 327333.Google Scholar
Petit-Maire, N., Riser, J., 1981. Holocene lake deposits and palaeoenvironments in central Sahara, northeastern Mali. Palaeogeography, Palaeoclimatology, Palaeoecology 35, 4561.Google Scholar
Peyron, O., Jolly, D., Braconnet, P., Bonnefille, R., Guiot, J., Wirrman, D., Chalie, F., 2006. Quantitative reconstructions of annual rainfall in Africa 6000 years ago; model-data comparison. Journal of Geophysical Research 111, D24110.Google Scholar
Pigati, J.S., Miller, D.M., Bright, J., Mahan, S.A., Nekola, J.C., Paces, J.B., 2011. Chronology, sedimentology, and microfauna of the ground-water discharge deposits in the central Mojave Desert, Valley Wells, California, USA. Geological Society of America Bulletin 123, 22242239.Google Scholar
Pigati, J.S., Rech, J.A., Quade, J., Bright, J., 2014. Desert wetlands in the geologic record. Earth-Science Reviews 132, 6781.Google Scholar
Placzek, C., Quade, J., Patchett, P. J., 2006. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, 515532.Google Scholar
Quade, J., Forester, R. M., Pratt, W. L., Carter, C., 1998. Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin. Quaternary Research 49, 129148.Google Scholar
Quade, J., Forester, R., Whelan, J., 2003. Late Quaternary paleohydrologic and paleotemperature change in southern Nevada. In: Enzel, Y., Wells, S., Lancaster, N. (Eds.), Paleoenvironments and Paleohydrology of the Mohave Desert and Southern Great Basin Deserts. Geological Society of America Special Paper 368. Geological Society of America, Boulder, CO, pp. 165188.Google Scholar
Quade, J., Mifflin, M. D., Pratt, W. L., McCoy, W., Burckle, L., 1995. Fossil spring deposits in the southern Great Basin and their implications for changes in water-table levels near Yucca Mountain, Nevada during Quaternary time. Geological Society of America Bulletin 107, 213230.Google Scholar
Quade, J., Rech, J, Betancourt, J., Latorre, C., Quade, B, Fisher, T., Rylander, K., 2008. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69, 343360.Google Scholar
Rech, J.A., Ginat, H., Catlett, G.A., Mischke, S., Winer, E.R., Pigati, J.S., 2017. Pliocene-Pleistocene water-bodies and associated deposits in southern Jordan and Israel, in Quaternary Environments. In: Enzel, Y., Bar-Yosef, O. (Eds.), Quaternary of the Levant: Environments, Climate Change, and Humans. Cambridge University Press, Cambridge, United Kingdom, pp. 127134.Google Scholar
Rech, J.A., Quade, J., Betancourt, J.L., 2002. Late Quaternary paleohydrology of the central Atacama Desert (lat 22°–24°S), Chile. Geological Society of America Bulletin 114, 334348.Google Scholar
Reeves, J.M., De Deckker, P., Halse, S.A., 2007. Groundwater ostracodes from the Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585, 99118.Google Scholar
Reheis, M.C., Adams, K.D., Oviatt, C. G., Bacon, S.N., 2014. Pluvial lakes in the Great Basin of the western United States—a review from outcrop. Quaternary Science Reviews 97, 3357.Google Scholar
Reheis, M. C., Sarna-Wojcicki, A.M., Reynolds, R.L., Repenning, C.A., Mifflin, M.D., 2002. Pliocene to middle Pleistocene lakes in the western Great Basin: ages and connections. In: Hershler, R., Currey, D., Madsen, D. (Eds.), Great Basin Aquatic Systems History. Smithsonian Contributions to Earth Science 33. Smithsonian Institution, Washington, DC, pp. 53108.Google Scholar
Ritchie, J.C., Eyles, C.H., Haynes, C.V., 1985. Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara. Nature 314, 352355.Google Scholar
Ritchie, J.C., Haynes, C.V., 1987. Holocene vegetation zonation in eastern Sahara. Nature 330, 645647.Google Scholar
Robinson, C., El-Baz, F., Ozdagan, M., Lewith, M., Banco, D., Oakley, S., Inzana, J., 2000. Use of radar data to delineate palaeodrainage flow directions in the Selima Sand Sheet, Eastern Sahara. Photogrammetric Engineering and Remote Sensing 66, 745753.Google Scholar
Rodwell, M. J., Hoskins, B. J., 1996. Monsoons and the dynamics of deserts. Quarterly Journal of the Royal Meteorological Society 122, 13851404.Google Scholar
Schneider, T., Bischoff, T., Haug, G. H., 2014. Migrations and dynamics of the Intertropical Convergence Zone. Nature 513, 4553.Google Scholar
Schuster, M, Roquin, C., Duringer, P, Brunet, M., Caugy, M., Fontugne, M., Mackaye, H.T., Vignaud, P., Ghienne, J-F., 2005. Holocene Mega-lake Chad palaeoshorelines from space. Quaternary Science Reviews 24, 18211827.Google Scholar
Schwarcz, H., Gascoyne, M., 1984. Uranium-series dating of Quaternary deposits. Developments in Palaeontology and Stratigraphy (Quaternary Dating Methods) 7, 3351.Google Scholar
Servant, M., 1973. Séquences continentales et variations climatiques: Evolution du basin du Tchad au Cénozoïque supérior. Thèse Sc., University of Paris. Published in Travaux and Documents ORSTOM, no. 159 (1983).Google Scholar
Servant, M., Servant, S., 1983. Paleolimnology of an upper Quaternary endorheic lake in Chad Basin. In: Carmouze, J.-P., Durand, J.R., Lévêque, C. (Eds.), Ecology and Productivity of a Shallow Tropical Ecosystem. Junk Publishers, The Hague, pp. 1126.Google Scholar
Simpson, J.H., 1876. Report on the Explorations across the Great Basin of the Territory of Utah for a Direct Wagon-Route from Camp Floyd to Genoa, in Carson Valley, in 1859. U.S. Government Printing Office, Washington, DC.Google Scholar
Skonieczny, C., Paillou, P., Bory, A., Bayon, G., Biscara, L, Crosta, X., Eynaud, F., et al., 2015. African humid periods triggered the reactivation of a large river system in western Sahara. Nature Communications. http://dx.doi.org/10.1038/ncomms9751.Google Scholar
Sonntag, C., Thorweihe, U., Rudolph, J., Lohnert, E.P., Junghans, C., Munnich, K.O., Klitzsch, E., El Shazly, E.M., Swailem, F.M., 1980. Paleoclimatic evidence in apparent 14C ages of Saharian groundwaters. Radiocarbon 22, 871878.Google Scholar
Stansbury, H., 1852. Exploration and Survey of the Valley of the Great Salt Lake, including a Reconnaissance of a New Route through the Rocky Mountains. Lippincott, Grambo, and Co, Philadelphia.Google Scholar
Strachey, H., 1853. Physical geography of western Tibet. Journal of the Royal Society of London 23, 169.Google Scholar
StreetF., A. F., A., Grove, A.T., 1979. Global maps of lake-level fluctuations since 30,000 yr B.P. Quaternary Research 12, 83118.Google Scholar
Su, H., Neelin, J. D., 2005. Dynamical mechanisms for African monsoon changes during the mid-Holocene. Journal of Geophysical Research 110, D19105.Google Scholar
Sultan, M., Sturchio, N.C., Gheith, H., Hady, Y.A., El Anbeawy, M., 2000. Chemical and isotopic constraints on the origin of Wadi El Tarfa ground water, eastern desert. Groundwater 38, 743751.Google Scholar
Sultan, M., Sturchio, N.C., Hassan, F.A., Hamdan, M.A.R., Alfy, Z.A., Stein, T., 1997. Precipitation source inferred from stable isotopic composition of Pleistocene ground-water and carbonate deposits in the western desert of Egypt. Quaternary Research 48, 2937.Google Scholar
Swenson, S., Wahr, J., 2009. Monitoring the water balance of Lake Victoria, East Africa, from space. Journal of Hydrology 370, 163176.Google Scholar
Swezey, C., Lancaster, N., Kocurek, G., Deynoux, M., Blum, M., Price, D.M., Pion, J.-C., 1999. Response of aeolian systems to Holocene climatic and hydrologic changes on the northern margin of the Sahara; a high-resolution record from the Chott Rharsa basin, Tunisia. The Holocene 9, 141147.Google Scholar
Szabo, B.J., Haynes, C.V. Jr., Maxwell, T.A., 1995. Ages of Quaternary pluvial episodes determined by uranium-series and radiocarbon dating of lacustrine deposits of Eastern Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology 113, 227242.Google Scholar
Szabo, B.J., McHugh, W.P., Schaber, G.G., Haynes, C.V. Jr., Breed, C.S., 1989. Uranium–series dated authigenic carbonates and Acheulian sites in southern Egypt. Science 243, 10531056.Google Scholar
TEMPO. 1996. Potential role of vegetation feedback in the climate sensitivity of high-latitude regions; a case study at 6000 years B.P. Global Biogeochemical Cycles 10, 727736.Google Scholar
Thiedig, F.M., Oezen, D., El-Chair, M., Geyh, M.M., 2000. The absolute age of the Quaternary lacustrine limestone of the Al Mahruqh formation—Murzuk Basin, Libya. In: Sola, M.A., Worsely, D. (Eds.), Geological Exploration of the Marzuk Basin. Elsevier, Amsterdam, pp. 89116.Google Scholar
Thiemeyer, H., 2000. From megachad to microchad—environmental changes during the Holocene. Berichte des Sonderforschungsbereichs 268, Band 14, Frankfurt am Main, 11–19.Google Scholar
Tierney, J.E., Pausata, F.S.R., deMenocal, P.B., 2017. Rainfall regimes of the Green Sahara. Science Advances 3, e1601503.Google Scholar
Tilho, J., 1925. Sur l’aire probable d’extension maxima de la mer paleo-tchadienne. Comptes rendus de l’Académie des Sciences 181, 643646.Google Scholar
Watrin, J., Lézine, A.M., Hely, C., 2009. Plant migration and plant communities at the time of the “green Sahara. Comptes rendus Geoscience 341, 656670.Google Scholar
Yin, X., Nicholson, S., 1998. The water balance of Lake Victoria. Hydrological Sciences Journal 43, 789811.Google Scholar
Zouari, K., Chkir, N., Causse, C., 1998. Pleistocene humid episodes in southern Tunisian chotts. In: Isotope Techniques in the Study of Environmental Change. Proceedings of an International Symposium, Vienna, April 14–18, 1997, IAEA-SM-349/41, pp. 543–554.Google Scholar
Supplementary material: PDF

Quade et al. supplementary material

Quade et al. supplementary material 1

Download Quade et al. supplementary material(PDF)
PDF 63.3 KB
Supplementary material: PDF

Quade et al. supplementary material

Quade et al. supplementary material 2

Download Quade et al. supplementary material(PDF)
PDF 59.7 KB
Supplementary material: PDF

Quade et al. supplementary material

Quade et al. supplementary material 3

Download Quade et al. supplementary material(PDF)
PDF 58.1 KB
Supplementary material: PDF

Quade et al. supplementary material

Quade et al. supplementary material 4

Download Quade et al. supplementary material(PDF)
PDF 18.5 KB
Supplementary material: File

Quade et al. supplementary material

Quade et al. supplementary material 5

Download Quade et al. supplementary material(File)
File 499.2 KB
Supplementary material: PDF

Quade et al. supplementary material

Quade et al. supplementary material 6

Download Quade et al. supplementary material(PDF)
PDF 149.6 KB
Supplementary material: PDF

Quade et al. supplementary material

Quade et al. supplementary material 7

Download Quade et al. supplementary material(PDF)
PDF 384.3 KB