Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:30:23.029Z Has data issue: false hasContentIssue false

Transmission electron microscopy of specimens and processes in liquids

Published online by Cambridge University Press:  10 October 2016

Frances M. Ross
Affiliation:
IBM T.J. Watson Research Center, USA; fmross@us.ibm.com
Chongmin Wang
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, USA; chongmin.wang@pnnl.gov
Niels de Jonge
Affiliation:
INM-Leibniz Institute for New Materials, Germany; niels.dejonge@leibniz-inm.de
Get access

Abstract

Transmission electron microscopy is a powerful technique for the analysis of solid samples, but it can also be used to image in liquid environments, gaining a unique view of processes and structures in liquids. Here, we describe recent developments in electron microscopy of liquids and discuss applications in several areas. We first describe closed-liquid-cell microscopy with its opportunities for visualizing electrochemical processes. We then discuss imaging of low-vapor-pressure liquids relevant to the operation of rechargeable batteries. Finally, we describe imaging of thick biological materials to obtain information on membrane proteins in intact mammalian cells that cannot be observed classically under dry or frozen conditions. Electron microscopy in liquid environments is developing rapidly and has the potential to solve key problems in materials science, physics, chemistry, and biology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Jonge, N., Ross, F.M., Nat. Nanotechnol. 6, 695 (2011).CrossRefGoogle Scholar
Ross, F.M., Science 350, aaa9886 (2015).CrossRefGoogle Scholar
Ruska, E., Kolloid Z. 100, 212 (1942).CrossRefGoogle Scholar
Abrams, I.M., McBain, J.W., J. Appl. Phys. 15, 607 (1944).CrossRefGoogle Scholar
Danilatos, G.D., Robinson, V.N.E., Scanning 18, 75 (1979).Google Scholar
Heide, H.G., Naturwissenschaften 47, 313 (1960).CrossRefGoogle Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M., Nat. Mater. 2, 532 (2003).CrossRefGoogle Scholar
Franks, R., Morefield, S., Wen, J., Liao, D., Alvarado, J., Strano, M., Marsh, C., J. Nanosci. Nanotechnol. 8, 4404 (2008).CrossRefGoogle Scholar
Zheng, H., Smith, R.K., Jun, Y.W., Kisielowski, C., Dahmen, U., Alivisatos, A.P., Science 324, 1309 (2009).CrossRefGoogle Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J., Piston, D.W., Proc. Natl. Acad. Sci. U.S.A. 106, 2159 (2009).CrossRefGoogle Scholar
Ring, E.A., de Jonge, N., Microsc. Microanal. 16, 622 (2010).CrossRefGoogle Scholar
Unocic, R.R., Sacci, R.L., Brown, G.M., Veith, G.M., Dudney, N.J., More, K.L., Walden, F.S. II, Gardiner, D.S., Damiano, J., Nackashi, D.P., Microsc. Microanal. 20, 452 (2014).CrossRefGoogle Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A., Alivisatos, A.P., Science 336, 61 (2012).CrossRefGoogle Scholar
Wojcik, M., Hauser, M., Li, W., Moon, S., Xu, K., Nat. Commun. 6, 7384 (2015).CrossRefGoogle Scholar
Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H., Qi, L., Kushima, A., Li, J., Science 330, 1515 (2010).CrossRefGoogle Scholar
Bogner, A., Thollet, G., Basset, D., Jouneau, P.H., Gauthier, C., Ultramicroscopy 104, 290 (2005).CrossRefGoogle Scholar
Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
Ross, F.M., Searson, P.C., Proc. 53rd Annu. Microsc. Soc. Amer. Meet. Bailey, G.W., Hennigar, R.A., Zaluzec, N.J., Eds. (Jones and Begell Publishing, New York, 1995), pp. 232.Google Scholar
Ross, F.M., IBM J. Res. Dev. 44, 489 (2000).CrossRefGoogle Scholar
Grogan, J.M., Schneider, N.M., Ross, F.M., Bau, H.H., J. Indian Inst. Sci. 92, 295 (2012).Google Scholar
Mueller, C., Harb, M., Dwyer, J.R., Miller, R.J.D., J. Phys. Chem. Lett. 4, 2339 (2013).CrossRefGoogle Scholar
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M., Zandbergen, H.W., J. Microelectromech. Syst. 19, 254 (2010).CrossRefGoogle Scholar
Gallaway, J.W., Desai, D., Gaikwad, A., Corredor, C., Banerjee, S., Steingart, D., J. Electrochem. Soc. 157, A1279 (2010).CrossRefGoogle Scholar
Magnussen, O.M., Zitzler, L., Gleich, B., Vogt, M.R., Behm, R.J., Electrochim. Acta 46, 3725 (2001).CrossRefGoogle Scholar
Abellan, P., Woehl, T.J., Parent, L.R., Browning, N.D., Evans, J.E., Arslan, I., Chem. Commun. 50, 4873 (2014).CrossRefGoogle Scholar
Peckys, D.B., Veith, G.M., Joy, D.C., de Jonge, N., PLoS One 4, e8214 (2009).CrossRefGoogle Scholar
Schneider, N.M., Norton, M.M., Mendel, B.J., Grogan, J.M., Ross, F.M., Bau, H.H., J. Phys. Chem. C 118, 22373 (2014).CrossRefGoogle Scholar
Grogan, J.M., Schneider, N.M., Ross, F.M., Bau, H.H., Nano Lett. 14, 359 (2014).CrossRefGoogle Scholar
Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C., Ross, F.M., Nano Lett. 6, 238 (2006).CrossRefGoogle Scholar
Radisic, A., Vereecken, P.M., Searson, P.C., Ross, F.M., Surf. Sci. 600, 1817 (2006).CrossRefGoogle Scholar
Park, J.H., Steingart, D.A., Schneider, N.M., Kodambaka, S., Ross, F.M., Nano Lett. (forthcoming).Google Scholar
Tarascon, J.M., Armand, M., Nature 414, 359 (2001).CrossRefGoogle Scholar
Chee, S.W., Ross, F.M., Duquette, D., Hull, R., “Studies of Corrosion of Al Thin Films Using Liquid Cell Transmission Electron Microscopy,” Mater. Res. Soc. Symp. Proc. 1525 (Materials Research Society, Warrendale, PA, 2013), p. 558.Google Scholar
Zaluzec, N.J., Burke, M.G., Haigh, S.J., Kulzick, M.A., Microsc. Microanal. 20, 323 (2014).CrossRefGoogle Scholar
Sutter, E., Jungjohann, K., Bliznakov, S., Courty, A., Maisonhaute, E., Tenney, S., Sutter, P., Nat. Commun. 5, 4946 (2014).CrossRefGoogle Scholar
Wang, C.M., Xu, W., Liu, J., Choi, D.W., Arey, B., Saraf, L.V., Zhang, J.G., Yang, Z.G., Thevuthasan, S., Baer, D.R., Salmon, N., J. Mater. Res. 25, 1541 (2010).CrossRefGoogle Scholar
Wang, C.M., J. Mater. Res. 30, 326 (2015).CrossRefGoogle Scholar
Liu, X.H., Huang, J.Y., Energy Environ. Sci. 4, 3844 (2011).CrossRefGoogle Scholar
Wang, F., Yu, H.-C., Chen, M.-H., Wu, L., Pereira, N., Thornton, K., Van der Ven, A., Zhu, Y., Amatucci, G.G., Graetz, J., Nat. Commun. 3, 1201 (2012).CrossRefGoogle Scholar
He, Y., Gu, M., Xiao, H., Luo, L., Shao, Y., Gao, F., Du, Y., Mao, S.X., Wang, C.M., Angew. Chem. Int. Ed. 55, 6244 (2016).CrossRefGoogle Scholar
Gu, M., Wang, Z.G., Connell, J.G., Perea, D.E., Lauhon, L.J., Gao, F., Wang, C.M., ACS Nano 7, 6303 (2013).CrossRefGoogle Scholar
Hatchard, T.D., Dahn, J.R., J. Electrochem. Soc. 151, A838 (2004).CrossRefGoogle Scholar
Kinoshita, T., Mori, Y., Hirano, K., Sugimoto, S., Okuda, K., Matsumoto, S., Namiki, T., Ebihara, T., Kawata, M., Nishiyama, H., Sato, M., Suga, M., Higashiyama, K., Sonomoto, K., Mizunoe, Y., Nishihara, S., Sato, C., Microsc. Microanal. 20, 469 (2014).CrossRefGoogle Scholar
Liv, N., van Oosten Slingeland, D.S., Baudoin, J.P., Kruit, P., Piston, D.W., Hoogenboom, J.P., ACS Nano 10, 265 (2016).CrossRefGoogle Scholar
Peckys, D.B., de Jonge, N., Microsc. Microanal. 20, 346 (2014).CrossRefGoogle Scholar
Peckys, D.B., Korf, U., de Jonge, N., Sci. Adv. 1, e1500165 (2015).CrossRefGoogle Scholar
Nishiyama, H., Suga, M., Ogura, T., Maruyama, Y., Koizumi, M., Mio, K., Kitamura, S., Sato, C., J. Struct. Biol. 169, 438 (2010).CrossRefGoogle Scholar
Epidermal Growth Factor, Protein Data Bank, National Science Foundation, http://dx.doi.org/10.2210/rcsb_pdb/mom_2010_6.CrossRefGoogle Scholar
de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D.B., Drouin, D., Ultramicroscopy 110, 1114 (2010).CrossRefGoogle Scholar
Peckys, D.B., Baudoin, J.P., Eder, M., Werner, U., de Jonge, N., Sci. Rep. 3, 2626 (2013).CrossRefGoogle Scholar
Hermannsdörfer, J., Tinnemann, V., Peckys, D.B., de Jonge, N., Microsc. Microanal. 20, 656 (2016).CrossRefGoogle Scholar
Dukes, M.J., Peckys, D.B., de Jonge, N., ACS Nano 4, 4110 (2010).CrossRefGoogle Scholar
Brennan, P.J., Kumagai, T., Berezov, A., Murali, R., Greene, M.I., Oncogene 21, 328 (2002).CrossRefGoogle Scholar
Vu, T., Claret, F.X., Front. Oncol. 2, 62 (2012).CrossRefGoogle Scholar
White, E.R., Singer, S.B., Augustyn, V., Hubbard, W.A., Mecklenburg, M., Dunn, B., Regan, B.C., ACS Nano 6, 6308 (2012).CrossRefGoogle Scholar
Alloyeau, D., Dachraoui, W., Javed, Y., Belkahla, H., Wang, G., Lecoq, H., Ammar, S., Ersen, O., Wisnet, A., Gazeau, F., Ricolleau, C., Nano Lett. 15, 2574 (2015).CrossRefGoogle Scholar
Smeets, P.J., Cho, K.R., Kempen, R.G., Sommerdijk, N.A., De Yoreo, J.J., Nat. Mater. 14, 394 (2015).CrossRefGoogle Scholar
Woehl, T.J., Kashyap, S., Firlar, E., Perez-Gonzalez, T., Faivre, D., Trubitsyn, D., Bazylinski, D.A., Prozorov, T., Sci. Rep. 4, 6854 (2014).CrossRefGoogle Scholar
Dukes, M.J., Thomas, R., Damiano, J., Klein, K.L., Balasubramaniam, S., Kayandan, S., Riffle, J.S., Davis, R.M., McDonald, S.M., Kelly, D.F., Microsc. Microanal. 20, 338 (2014).CrossRefGoogle Scholar