Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T21:26:15.378Z Has data issue: false hasContentIssue false

Representation, abstraction, and simple-minded sophisticates

Published online by Cambridge University Press:  19 June 2020

Peter Dayan*
Affiliation:
Max-Planck-Gesellschaft, Max Planck-Ring 8, 72076Tübingen, Germany. dayan@tue.mpg.de https://www.kyb.tuebingen.mpg.de/publication-search/60427?person=persons217460

Abstract

Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, J. (1985) Statistical decision theory and Bayesian analysis. Springer.CrossRefGoogle Scholar
Collins, A. G. E. & Frank, M. J. (2012) How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European Journal of Neuroscience 35:1024–35.CrossRefGoogle Scholar
Daw, N. D., Niv, Y. & Dayan, P. (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience 8(12):1704–711.CrossRefGoogle ScholarPubMed
Dayan, P. (1993) Improving generalization for temporal difference learning: The successor representation. Neural Computation 5:613–24.CrossRefGoogle Scholar
Gershman, S. J. & Daw, N. D. (2017) Reinforcement learning and episodic memory in humans and animals: An integrative framework. Annual Review of Psychology 68(1):101–28. https://doi.org/10.1146/annurev-psych-122414-033625.CrossRefGoogle Scholar
Goodman, N. D., Mansinghka, V. K., Roy, D. M., Bonawitz, K. & Tenenbaum, J. B. (2012) Church: A language for generative models. CoRR, abs/ 1206.3255.Google Scholar
Harsanyi, J. C. (1967) Games with incomplete information played by “Bayesian” players, I–III Part I. The basic model. Management Science 14(3):159–82.CrossRefGoogle Scholar
Hinton, G. & Sejnowski, T., ed. (1999) Unsupervised learning: Foundations of neural computation. MIT Press.CrossRefGoogle Scholar
Keramati, M., Dezfouli, A. & Piray, P. (2011) Speed/accuracy trade-off between the habitual and the goal-directed processes. PLOS Computational Biology 7:e1002055.CrossRefGoogle ScholarPubMed
Keramati, M., Smittenaar, P., Dolan, R. J. & Dayan, P. (2016) Adaptive integration of habits into depth-limited planning defines a habitual-goal-directed spectrum. Proceedings of the National Academy of Sciences 113:12868–73.CrossRefGoogle ScholarPubMed
Lengyel, M. and Dayan, P. (2007) Hippocampal contributions to control: The third way. In: Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 3–6, 2007, pp. 889–96.Google Scholar
Littman, M. L., Sutton, R. S. & Singh, S. P. (2001) Predictive representations of state. In: Advances in Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3–8, 2001, Vancouver, British Columbia, Canada], pp. 1555–61.Google Scholar
MacKay, D. (1956) The epistemological problem for automata. In: Automata studies, ed. Shannon, C. & McCarthy, J., pp. 235–51. Princeton University Press.Google Scholar
Marr, D. (1970) A theory for cerebral neocortex. Proceedings of the Royal Society B: Biological Sciences 176:161234.Google ScholarPubMed
Neisser, U. (1967) Cognitive psychology. Appleton-Century-Crofts.Google Scholar
Pezzulo, G., Rigoli, F. & Chersi, F. (2013) The mixed instrumental controller: Using value of information to combine habitual choice and mental simulation. Frontiers in Psychology 4:92.CrossRefGoogle ScholarPubMed
Rao, R. P. N. & Ballard, D. H. (1999) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1):7987. Available at: http://doi.org/10.1038/4580.CrossRefGoogle ScholarPubMed
Sutton, R. S. & Barto, A. G. (1998) Reinforcement learning: An introduction (adaptive computation and machine learning). The MIT Press.Google Scholar