Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T14:24:12.198Z Has data issue: false hasContentIssue false

From ion to atom to dendrite: Formation and nanomechanical behavior of electrodeposited lithium

Published online by Cambridge University Press:  09 July 2020

Michael A. Citrin
Affiliation:
Division of Engineering and Applied Science, California Institute of Science and Technology, USA
Heng Yang
Affiliation:
Division of Engineering and Applied Science, California Institute of Science and Technology, USA
Simon K. Nieh
Affiliation:
Front Edge Technology, Baldwin Park, USA
Joel Berry
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania; Materials Science Division, Lawrence Livermore National Laboratory, Livermore, USA
Wenpei Gao
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, USA
Xiaoqing Pan
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine; Department of Physics and Astronomy, University of California, Irvine, USA
David J. Srolovitz
Affiliation:
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR
Julia R. Greer*
Affiliation:
Division of Engineering and Applied Science, California Institute of Science and Technology; jrgreer@caltech.edu
*
*Corresponding author.
Get access

Abstract

Development of high energy density solid-state batteries with Li metal anodes has been limited by uncontrollable growth of Li dendrites in liquid and solid electrolytes (SEs). This, in part, may be caused by a dearth of information about mechanical properties of Li, especially at the nano- and microlength scales and microstructures relevant to Li batteries. We investigate Li electrodeposited in a commercial LiCoO2/LiPON/Cu solid-state thin-film cell, grown in situ in a scanning electron microscope equipped with nanomechanical capabilities. Experiments demonstrate that Li was preferentially deposited at the LiPON/Cu interface along the valleys that mimic the domain boundaries of underlying LiCoO2 (cathode). Cryogenic electron microscopy analysis of electrodeposited Li revealed a single-crystalline microstructure, and in situ nanocompression experiments on nano-pillars with 360–759 nm diameters revealed their average Young's modulus to be 6.76 ± 2.88 GPa with an average yield stress of 16.0 ± 6.82 MPa, ~24x higher than what has been reported for bulk polycrystalline Li. We discuss mechanical deformation mechanisms, stiffness, and strength of nano-sized electrodeposited Li in the framework of its microstructure and dislocation-governed nanoscale plasticity of crystals, and place it in the parameter space of existing knowledge on small-scale Li mechanics. The enhanced strength of Li at small scales may explain why it can penetrate and fracture through much stiffer and harder SEs than theoretically predicted.

Type
Impact Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513 (2014).10.1039/C3EE40795KCrossRefGoogle Scholar
McCloskey, B.D., Attainable gravimetric and volumetric energy density of Li–S and Li ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 6, 4581 (2015).10.1021/acs.jpclett.5b01814CrossRefGoogle Scholar
Li, Z., Huang, J., Liaw, B.Y., Metzler, V., Zhang, J., A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 254, 168 (2014).10.1016/j.jpowsour.2013.12.099CrossRefGoogle Scholar
Lu, Y., Tu, Z., Archer, L.A., Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961 (2014).10.1038/nmat4041CrossRefGoogle ScholarPubMed
Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., Chen, X., Shao, Y., Engelhard, M.H., Nie, Z., Xiao, J., Liu, X., Sushko, P.V., Liu, J., Zhang, J.-G., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450 (2013).10.1021/ja312241yCrossRefGoogle ScholarPubMed
Zhamu, A., Chen, G., Liu, C., Neff, D., Fang, Q., Yu, Z., Xiong, W., Wang, Y., Wang, X., Jang, B.Z., Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Env. Sci. 5, 5701 (2012).10.1039/C2EE02911ACrossRefGoogle Scholar
Yang, H., Fey, E.O., Trimm, B.D., Dimitrov, N., Whittingham, M.S., Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency. J. Power Sources 272, 900 (2014).10.1016/j.jpowsour.2014.09.026CrossRefGoogle Scholar
Monroe, C., Newman, J., The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).10.1149/1.1850854CrossRefGoogle Scholar
Samsonov, G.V., Handbook of the Physicochemical Properties of the Elements (Springer Science & Business Media, New York, 2012).Google Scholar
Ferrese, A., Newman, J., Mechanical deformation of a lithium-metal anode due to a very stiff separator. J. Electrochem. Soc. 161, A1350 (2014).10.1149/2.0911409jesCrossRefGoogle Scholar
Tariq, S., Ammigan, K., Hurh, P., Schultz, R., Liu, P., Shang, J., Li material testing-fermilab antiproton source lithium collection lens. In Proceedings of the 2003 Particle Accelerator Conference 3, 1452 (IEEE, 2003).10.1109/PAC.2003.1288558CrossRefGoogle Scholar
Ahmad, Z., Viswanathan, V., Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119, 056003 (2017).10.1103/PhysRevLett.119.056003CrossRefGoogle ScholarPubMed
Wang, P., Qu, W., Song, W.-L., Chen, H., Chen, R., Fang, D., Electro–chemo–mechanical issues at the interfaces in solid-state lithium metal batteries. Adv. Funct. Mater. 1900950 (2019).10.1002/adfm.201900950CrossRefGoogle Scholar
McGrogan, F.P., Swamy, T., Bishop, S.R., Eggleton, E., Porz, L., Chen, X., Chiang, Y.-M., Van Vliet, K.J., Compliant yet brittle mechanical behavior of Li2S–P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017).10.1002/aenm.201602011CrossRefGoogle Scholar
Wang, M.J., Choudhury, R., Sakamoto, J., Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule (2019), doi:10.1016/j.joule.2019.06.017.CrossRefGoogle Scholar
Porz, L., Swamy, T., Sheldon, B.W., Rettenwander, D., Frömling, T., Thaman, H.L., Berendts, S., Uecker, R., Carter, W.C., Chiang, Y.-M., Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).10.1002/aenm.201701003CrossRefGoogle Scholar
Lewis, J.A., Cortes, F.J.Q., Boebinger, M.G., Tippens, J., Marchese, T.S., Kondekar, N., Liu, X., Chi, M., McDowell, M.T., Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591 (2019).10.1021/acsenergylett.9b00093CrossRefGoogle Scholar
Ren, Y., Shen, Y., Lin, Y., Nan, C.-W., Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27 (2015).10.1016/j.elecom.2015.05.001CrossRefGoogle Scholar
Cheng, E.J., Sharafi, A., Sakamoto, J., Intergranular Li metal propagation through polycrystalline Li6. 25Al0. 25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85 (2017).10.1016/j.electacta.2016.12.018CrossRefGoogle Scholar
Tippens, J., Miers, J.C., Afshar, A., Lewis, J.A., Cortes, F.J.Q., Qiao, H., Marchese, T.S., Di Leo, C.V., Saldena, C., McDowell, M.T., Visualizing chemo-mechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4 (6), 1475 (2019).10.1021/acsenergylett.9b00816CrossRefGoogle Scholar
Han, F., Westover, A.S., Yue, J., Fan, X., Wang, F., Chi, M., Leonard, D.N., Dudney, N.J., Wang, H., Wang, C., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187 (2019).10.1038/s41560-018-0312-zCrossRefGoogle Scholar
Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V., Greer, J.R., Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl. Acad. Sci. 114, 57 (2017).10.1073/pnas.1615733114CrossRefGoogle Scholar
Herbert, E.G., Hackney, S.A., Thole, V., Dudney, N.J., Phani, P.S., Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of diffusion-mediated flow. J. Mater. Res. 33, 1347 (2018).10.1557/jmr.2018.84CrossRefGoogle Scholar
Herbert, E.G., Hackney, S.A., Thole, V., Dudney, N.J., Phani, P.S., Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of the transition from diffusion to dislocation-mediated flow. J. Mater. Res. 33, 1361 (2018).10.1557/jmr.2018.85CrossRefGoogle Scholar
Masias, A., Felten, N., Garcia-Mendez, R., Wolfenstine, J., Sakamoto, J., Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585 (2019).10.1007/s10853-018-2971-3CrossRefGoogle Scholar
Wang, Y., Cheng, Y.T., A nanoindentation study of the viscoplastic behavior of pure lithium. Scr. Mater. 130, 191 (2017).10.1016/j.scriptamat.2016.12.006CrossRefGoogle Scholar
Narayan, S., Anand, L., A large deformation elastic–viscoplastic model for lithium. Extreme Mech. Lett. 24, 21 (2018).10.1016/j.eml.2018.08.006CrossRefGoogle Scholar
LePage, W.S., Chen, Y., Kazyak, E., Chen, K.-H., Sanchez, A.J., Poli, A., Arruda, E.M., Thouless, M.D., Dasgupta, N.P., Lithium mechanics: Roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 166, A89 (2019).10.1149/2.0221902jesCrossRefGoogle Scholar
Hull, D., Rosenberg, H.M., The deformation of lithium, sodium and potassium at low temperatures: Tensile and resistivity experiments. Philos. Mag. 4, 303 (1959).10.1080/14786435908233342CrossRefGoogle Scholar
Schultz, R.P., Lithium: Measurement of Young's Modulus and Yield Strength (Fermi National Accelerator Laboratory, Batavia, IL, 2002).Google Scholar
Wolfenstine, J., Jo, H., Cho, Y.-H., David, I.N., Askeland, P., Case, E.D., Kim, H., Choe, H., Sakamoto, J., A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid li-ionconductors. Mater. Lett. 96, 117 (2013).10.1016/j.matlet.2013.01.021CrossRefGoogle Scholar
Motoyama, M., Ejiri, M., Iriyama, Y., Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. J. Electrochem. Soc. 162, A7067 (2015).10.1149/2.0051513jesCrossRefGoogle Scholar
Zhang, L., Yang, T., Du, C., Liu, Q., Tang, Y., Zhao, J., Wang, B., Chen, T., Sun, Y., Jia, P., Li, H., Geng, L., Chen, J., Ye, H., Wang, Z., Li, Y., Sun, H., Li, X., Dai, Q., Tang, Y., Peng, Q., Shen, T., Zhang, X., Zhu, T., Huang, J., Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up. Nat. Nanotechnol. 15, 94 (2020).10.1038/s41565-019-0604-xCrossRefGoogle Scholar
Fincher, C.D., Ojeda, D., Zhang, Y., Pharr, G.M., Mechanical properties of metallic lithium: from nano to bulk scales. Acta Mater. 186, 215 (2020).10.1016/j.actamat.2019.12.036CrossRefGoogle Scholar
Zhang, P., Li, S.X., Zhang, Z.F., General relationship between strength and hardness. Mater. Sci. Eng. A 529, 62 (2011).10.1016/j.msea.2011.08.061CrossRefGoogle Scholar
Liu, X.H., Zhong, L., Zhang, L., Kushima, A., Mao, S.X., Li, J., Ye, Z.Z., Sullivan, J.P., Huang, J.Y., Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Appl. Phys. Lett. 98, 183107 (2011).10.1063/1.3585655CrossRefGoogle Scholar
Kim, J.-Y., Jang, D., Greer, J.R., Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355 (2010).Google Scholar
Krasnov, V., Nieh, K.-W., Ting, S.-J., Method of manufacturing a thin film battery, US Patent (2005).Google Scholar
Krasnov, V., Nieh, K.-W., Li, J., Thin film battery and manufacturing method, US Patent (2011).Google Scholar
Beg, M.M., Nielsen, M., Temperature dependence of lattice dynamics of lithium 7. Phys. Rev. B 14, 4266 (1976).Google Scholar
Lee, S.-W., Han, S.M., Nix, W.D., Uniaxial compression of fcc Au nanopillars on an MgO substrate: The effects of prestraining and annealing. Acta Mater. 57, 4404 (2009).10.1016/j.actamat.2009.06.002CrossRefGoogle Scholar
Greer, J.R., De Hosson, J.T.M., Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).10.1016/j.pmatsci.2011.01.005CrossRefGoogle Scholar
Lee, G., Kim, J.-Y., Burek, M.J., Greer, J.R., Tsui, T.Y., Plastic deformation of indium nanostructures. Mater. Sci. Eng. A 528, 6112 (2011).Google Scholar
Burek, M.J., et al. Fabrication, microstructure, and mechanical properties of tin nanostructures. Mater. Sci. Eng. A 528, 5822 (2011).10.1016/j.msea.2011.04.019CrossRefGoogle Scholar
Bates, J.B., Dudney, N.J., Gruzalski, G.R., Zuhr, R.A., Choudhury, A., Luck, C.F., Robertson, J.D., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103 (1993).Google Scholar
Dudney, N.J., Solid-state thin-film rechargeable batteries. Mater. Sci. Eng. B 116, 245 (2005).10.1016/j.mseb.2004.05.045CrossRefGoogle Scholar
Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A., Evans, C.D., Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33 (2000).Google Scholar
Li, J., Ma, C., Chi, M., Liang, C., Dudney, N.J., Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).Google Scholar
Neudecker, B.J., Dudney, N.J., Bates, J.B., “Lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517 (2000).10.1149/1.1393226CrossRefGoogle Scholar
Albertus, P., Babinec, S., Litzelman, S., Newman, A., A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16 (2018).Google Scholar
Comsol, Multiphysics, v. 5.2 a. COMSOL AB, Stockholm. (Sweden, 2018), www.comsol.com.Google Scholar
Hamon, Y., Douard, A., Sabary, F., Marcel, C., Vinatier, P., Pecquenard, B., Levasseur, A., Influence of sputtering conditions on ionic conductivity of LiPON thin films. Solid State Ion. 177, 257 (2006).Google Scholar
Schwenzel, J., Thangadurai, V., Weppner, W., Investigation of thin film all-solid-state lithium ion battery materials. Ionics 9, 348 (2003).Google Scholar
Sagane, F., Ikeda, K., Okita, K., Sano, H., Sakaebe, H., Iriyama, Y., Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J. Power Sources 233, 34 (2013).10.1016/j.jpowsour.2013.01.051CrossRefGoogle Scholar
Qian, J., Henderson, W.A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O., Zhang, J.-G., High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).Google ScholarPubMed
Li, Y., Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.-L., Joubert, L.-M., Chin, R., Koh, A.L., Yu, Y., Perrino, J., Butz, B., Chu, S., Cui, Y., Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506 (2017).10.1126/science.aam6014CrossRefGoogle ScholarPubMed
Wang, F., Graetz, J., Moreno, M.S., Ma, C., Wu, L., Volkov, V., Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy. ACS Nano 5, 1190 (2011).10.1021/nn1028168CrossRefGoogle ScholarPubMed
Lru, D.-R., Williams, D.B., The electron-energy-loss spectrum of lithium metal. Philos. Mag. B 53, L123 (1986).CrossRefGoogle Scholar
Mehdi, B.L., Qian, J., Nasybulin, E., Park, C., Welch, D.A., Faller, R., Mehta, H., Henderson, W.A., Xu, W., Wang, C.M., Evans, J.E., Liu, J., Zhang, J.-G., Mueller, K.T., Browning, N.D., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168 (2015).10.1021/acs.nanolett.5b00175CrossRefGoogle ScholarPubMed
Wang, X., Zhang, M., Alvarado, J., Wang, S., Sina, M., Lu, B., Bouwer, J., Xu, W., Xiao, J., Zhang, J.-G., Liu, J., Meng, Y.S., New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606 (2017).10.1021/acs.nanolett.7b03606CrossRefGoogle ScholarPubMed
Vitos, L., Ruban, A.V., Skriver, H.L., Kollar, J., The surface energy of metals. Surf. Sci. 411, 186 (1998).10.1016/S0039-6028(98)00363-XCrossRefGoogle Scholar
Greer, J.R., Oliver, W.C., Nix, W.D., Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).10.1016/j.actamat.2004.12.031CrossRefGoogle Scholar
Jennings, A.T., Burek, M.J., Greer, J.R., Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).10.1103/PhysRevLett.104.135503CrossRefGoogle ScholarPubMed
Han, S.M., Feng, G., Jung, J.Y., Jung, H.J., Groves, J.R., Nix, W.D., Cui, Y., Critical-temperature/Peierls-stress dependent size effects in body centered cubic nanopillars. Appl. Phys. Lett. 102, 041910 (2013).10.1063/1.4776658CrossRefGoogle Scholar
Schneider, A.S., Kaufmann, D., Clark, B.G., Frick, C.P., Gruber, P.A., Mönig, R., Kraft, O., Arzt, E., Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103, 105501 (2009).Google ScholarPubMed
Ji, L.-W., Young, S.-J., Fang, T.-H., Liu, C.-H., Buckling characterization of vertical ZnO nanowires using nanoindentation. Appl. Phys. Lett. 90, 033109 (2007).10.1063/1.2431785CrossRefGoogle Scholar
Richter, G., Hillerich, K., Gianola, D.S., Monig, R., Kraft, O., Volkert, C.A., Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048 (2009).10.1021/nl9015107CrossRefGoogle ScholarPubMed
Bei, H., Shim, S., George, E.P., Miller, M.K., Herbert, E.G., Pharr, G.M., Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr. Mater. 57, 397 (2007).Google Scholar
Kiener, D., Motz, C., Rester, M., Jenko, M., Dehm, G., FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng. A 459, 262 (2007).Google Scholar
Sneddon, I.N., The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).10.1016/0020-7225(65)90019-4CrossRefGoogle Scholar
Herbert, E.G., Hackney, S.A., Dudney, N.J., Phani, P.S., Nanoindentation of high-purity vapor deposited lithium films: The elastic modulus. J. Mater. Res. 33, 1335 (2018).Google Scholar
Slotwinski, T., Trivisonno, J., Temperature dependence of the elastic constants of single crystal lithium. J. Phys. Chem. Solids 30, 1276 (1969).Google Scholar
Krenn, C.R., Roundy, D., Morris, J.W. Jr., Cohen, M.L., Ideal strengths of bcc metals. Mater. Sci. Eng. A 319, 111 (2001).CrossRefGoogle Scholar
Burek, M.J., Greer, J.R., Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 69 (2009).Google Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N., Nix, W.D., Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).10.1126/science.1098993CrossRefGoogle ScholarPubMed
Sudarshan, P., Johanns, K.E., Duscher, G., Gail, A., George, P.E., Pharr, G.M., Scanning transmission electron microscope observations of defects in as-grown and pre-strained Mo alloy fibers. Acta Mater. 59, 2172 (2011).Google Scholar
Bei, H., Shim, S., Pharr, G.M., George, E.P., Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).10.1016/j.actamat.2008.05.030CrossRefGoogle Scholar
Gangulee, A., The structure of electroplated and vapor-deposited copper films. J. Appl. Phys. 43, 867 (1972).10.1063/1.1661296CrossRefGoogle Scholar
Johanns, K.E., et al. In-situ tensile testing of single-crystal molybdenum-alloy fibers with various dislocation densities in a scanning electron microscope. J. Mater. Res. 27, 508 (2012).CrossRefGoogle Scholar
Xiao, Q., Huang, L., Shi, Y., Suppression of shear banding in amorphous ZrCuAl nanopillars by irradiation. J. Appl. Phys. 113, 083514 (2013).Google Scholar
Magagnosc, D.J., Kumar, G., Schroers, J., Felfer, P., Cairney, J.M., Gianola, D.S., Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires. Acta Mater. 74, 165 (2014).10.1016/j.actamat.2014.04.002CrossRefGoogle Scholar
Chen, D.Z., Gu, X.W., An, Q., Goddard, W.A. III, Greer, J.R., Ductility and work hardening in nano-sized metallic glasses. Appl. Phys. Lett. 106, 061903 (2015).10.1063/1.4907773CrossRefGoogle Scholar
Saint, J., Morcrette, M., Larcher, D., Tarascon, J.M., Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li. Solid State Ion. 176, 189 (2005).10.1016/j.ssi.2004.05.021CrossRefGoogle Scholar
Jennings, A.T., Gross, C., Greer, F., Aitken, Z.H., Lee, S.-W., Weinberger, C.R., Greer, J.R., Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars. Acta Mater. 60, 3444 (2012).10.1016/j.actamat.2012.03.013CrossRefGoogle Scholar
Hommel, M., Kraft, O., Deformation behavior of thin copper films on deformable substrates. Acta Mater. 49, 3935 (2001).Google Scholar
Zhu, T., Li, J., Samanta, A., Leach, A., Gall, K., Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).10.1103/PhysRevLett.100.025502CrossRefGoogle ScholarPubMed
Jennings, A.T., Li, J., Greer, J.R., Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59, 5627 (2011).Google Scholar
Cai, W., Bulatov, V.V., Mobility laws in dislocation dynamics simulations. Mater. Sci. Eng. A 387, 277 (2004).CrossRefGoogle Scholar
Friedman, N., Jennings, A.T., Tsekenis, G., Kim, J.-Y., Tao, M., Uhl, J.T., Greer, J.R., Dahmen, K.A., Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model. Phys. Rev. Lett. 109, 095507 (2012).10.1103/PhysRevLett.109.095507CrossRefGoogle ScholarPubMed
Ni, X., Zhang, H., Liarte, D.B., McFaul, L.W., Dahmen, K.A., Sethna, J.P., Greer, J.R., Yield precursor dislocation avalanches in small crystals: the irreversibility transition. Phys. Rev. Lett. 123, 035501 (2019).Google ScholarPubMed
Supplementary material: File

Citrin et al. supplementary material

Figures S1-S12 and Table S1

Download Citrin et al. supplementary material(File)
File 142.1 MB
Supplementary material: File

Citrin et al. supplementary material

Citrin et al. supplementary material 1

Download Citrin et al. supplementary material(File)
File 30.5 KB

Citrin et al. supplementary material

Citrin et al. supplementary material 2

Download Citrin et al. supplementary material(Video)
Video 26 MB

Citrin et al. supplementary material

Citrin et al. supplementary material 3

Download Citrin et al. supplementary material(Video)
Video 11.6 MB