Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T23:22:43.073Z Has data issue: false hasContentIssue false

Luminescence Spectroscopical Properties of Plagioclase Particles from the Hayabusa Sample Return Mission: An Implication for Study of Space Weathering Processes in the Asteroid Itokawa

Published online by Cambridge University Press:  23 February 2017

Arnold Gucsik*
Affiliation:
Department of Geology, University of Johannesburg, Johannesburg, 2600 Auckland Park, South Africa Department of Applied and Nonlinear Optics, Wigner Research Institute for Physics, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, 1121 Budapest, Hungary
Tomoki Nakamura
Affiliation:
Department of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
Cornelia Jäger
Affiliation:
Laboratory Astrophysics and Cluster Physics Group at the Institute of Solid State Physics Friedrich Schiller University Jena, Helmholtzweg 3, D-07745 Jena, Germany
Kiyotaka Ninagawa
Affiliation:
Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
Hirotsugu Nishido
Affiliation:
Department of Biosphere-Geosphere System Science, Okayama University of Science, 1-1 Ridai-cho, Okayama, 700-0005, Japan
Masahiro Kayama
Affiliation:
Department of Earth and Planetary Material Sciences, Faculty of Science, Tohoku University Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan
Akira Tsuchiyama
Affiliation:
Division of Earth and Planetary Sciences, Faculty of Science, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyu-ku, Kyoto-shi 606-8502, Japan
Ulrich Ott
Affiliation:
Savaria University Center, University of West Hungary, Karolyi Gaspar ter 4, Szombathely, H-9700, Hungary
Ákos Kereszturi
Affiliation:
Astronomical Research Institute, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, 1121, Budapest, Hungary
*
*Corresponding author.sopronianglicus@gmail.com
Get access

Abstract

We report a systematic spectroscopical investigation of three plagioclase particles (RB-QD04-0022, RA-QD02-0025-01, and RA-QD02-0025-02) returned by the Hayabusa spacecraft from the asteroid Itokawa, by means of scanning electron microscopy, cathodoluminescence microscopy/spectroscopy, and micro-Raman spectroscopy. The cathodoluminescence properties are used to evaluate the crystallization effects and the degree of space weathering processes, especially the shock-wave history of Itokawa. They provide new insights regarding spectral changes of asteroidal bodies due to space weathering processes. The cathodoluminescence spectra of the plagioclase particles from Itokawa show a defect-related broad band centered at around 450 nm, with a shoulder peak at 425 nm in the blue region, but there are no Mn- or Fe-related emission peaks. The absence of these crystal field-related activators indicates that the plagioclase was formed during thermal metamorphism at subsolidus temperature and extreme low oxygen fugacity. Luminescence characteristics of the selected samples do not show any signatures of the shock-induced microstructures or amorphization, indicating that these plagioclase samples suffered no (or low-shock pressure regime) shock metamorphism. Cathodoluminescence can play a key role as a powerful tool to determine mineralogy of fine-grained astromaterials.

Type
Materials Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agangi, A., Gucsik, A., Nishido, H., Ninagawa, K. & Kamenetsky, V.S. (2016). Relation between cathodoluminescence and trace-element distribution of magmatic topaz from the Ary-Bulak massif, Russia. Mineral Mag 80, 881899.CrossRefGoogle Scholar
Britt, D.T., Schelling, P.K., Consolmagno, G.J. & Bradley, T. (2014). Space weathering on volatile-rich asteroids. In 45th Lunar Planet Sci Conf, abstract#2067, Houston, TX, USA, 17–21 March 2014.Google Scholar
Finch, A. & Klein, J. (1999). The causes and petrological significance of cathodoluminescence emission from alkali feldspars. Contrib Mineral Petrol 135, 234243.CrossRefGoogle Scholar
Friedrich, J.M., Perrotta, G.C. & Kimura, M. (2014). Compositions, geochemistry, and shock histories of recrystallized LL chondrites. Geochim Cosmochim Acta 139, 8397.CrossRefGoogle Scholar
Fritz, J., Greshake, A. & Stöffler, D. (2005). Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: Evidence of progressive shock metamorphism. Antarct Meteorite Res 18, 96116.Google Scholar
Gaffey, M.J., Bell, J.F., Brown, R.H., Burbine, T.H., Piatek, J.L., Reed, K.L. & Chaky, D.A. (1993). Mineralogical variations within the S-type asteroid class. Icarus 106, 573602.CrossRefGoogle Scholar
Gaft, M., Reisfeld, R. & Panczer, G. (2005). Modern Luminescence Spectroscopy of Minerals and Materials. Heidelberg: Springer-Verlag, p 367.Google Scholar
Gavin, P., Chevrier, V., Ninagawa, K., Gucsik, A. & Hasegawa, S. (2013). Experimental investigation into the effects of meteorite impacts on the spectral properties of the phyllosilicates on Mars. J Geophys Res 118, E004185.CrossRefGoogle Scholar
Geake, J.E., Walker, G., Telfer, D.J., Mills, A.A. & Garlick, G.F.J. (1973). Luminescence of lunar, terrestrial and synthesized plagioclase, caused by Mn+2 and Fe3+. In Proceedings of 4th Lunar Sci Conf, Houston, TX, USA, 5–8 March 1973, pp. 3181–3189.Google Scholar
Geake, J.E., Walker, G., Mills, A.A. & Garlick, G.F.J. (1971). Luminescence of Apollo lunar samples. In Proceedings of Second Lunar Sci Conf, Houston, TX, USA, 11–14 March 1971, pp. 2265–2275.Google Scholar
Götze, J., Krebetchek, M.R., Habermann, D. & Wold, D. (2000). High-resolution cathodoluminescence of feldspar minerals. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds), pp. 245270. Berlin: Springer Verlag.CrossRefGoogle Scholar
Götze, J., Habermann, D., Kempe, U., Neuser, R.D. & Richter, D.K. (1999). Cathodoluminescence microscopy and spectroscopy of plagioclases from lunar soil. Am Min 84, 10271032.CrossRefGoogle Scholar
Gucsik, A., Nishido, H., Ninagawa, K., Kereszturi, A., Nakamura, T., Tsuchiyama, A., Jäger, C., Ott, U. & Kayama, M. (2015). Luminescence spectroscopical properties of plagioclase particles from Hayabusa Sample Return Mission. In 46th Lunar Planet Sci Conf, abstract#2931, Houston, TX, USA, 16–20 March 2015.Google Scholar
Gucsik, A., Endo, T., Nakazato, T., Nishido, H., Ninagawa, K., Kayama, M., Bérczi, S.Z., Nagy, S.Z., Ábrahám., P., Kimura, Y., Gyollai, I., Simonia, I., Rózsa, P., Apai, D., Mihályi, K., Nagy, M. & Ott, U. (2013). Cathodoluminescence microscopy and spectroscopy of forsterite from Kaba meteorite: An application to the study of hydrothermal alteration of parent body. Meteorit Planet Sci 48, 25772596.CrossRefGoogle Scholar
Gucsik, A., Tsukamoto, T., Kimura, Y., Miura, H., Nishido, H., Kayama, M., Ninagawa, K. & Endo, T. (2012 a). Cathodoluminescence microcharacterization of the experimentally grown of forsterite chondrule produced under super cooling. J Luminescence 132, 10411047.CrossRefGoogle Scholar
Gucsik, A., Nishido, H., Ninagawa, K., Ott, U., Tsuchiyama, A., Kayama, M., Simonia, I. & Boudou, J.-P. (2012 b). Cathodoluminescence microscopy and spectroscopy of micro-and nanodiamonds: An implication for the laboratory astrophysics. Microsc Microanal 18, 12851291.CrossRefGoogle ScholarPubMed
Gucsik, A., Bérczi, S.Z., Okumura, T., Nishido, H., Ninagawa, K. & Nagy, S.Z. (2009). Scanning electron microscope-cathodoluminescence properties of fayalite and forsterite from Kaba CV3 Chondrite: Application to mineralogy of IDPs. AIP Conf Proc 1163, 168174.CrossRefGoogle Scholar
Gucsik, A., Sears, D.W.G., Craig, J., Sadeghatpour, F. & Graupner, W. (2007). Cathodoluminescence properties of the Semarkona chondrite: An implication for mineralogy of interstellar dust particles of the Stardust mission. In 38th Lunar Planet Sci Conf, abstract#1051, Houston, TX, USA, 12–16 March 2007.Google Scholar
Gucsik, A., Koeberl, C., Brandstätter, F., Libowitzky, E. & Zhang, M. (2004 a). Infrared, Raman and cathodoluminescence studies of impact glasses. Meteorit Planet Sci 39, 12731285.CrossRefGoogle Scholar
Gucsik, A., Koeberl, C., Brandstätter, F., Libowitzky, E. & Reimold, W.U. (2004 b). Cathodoluminescence, electron microscopy, and Raman spectroscopy of experimentally shock metamorphosed zircon crystals and naturally shocked zircon from the Ries impact crater. In Cratering in Marine Environments and on Ice, Dypvik, H., Burchell, M. & Claeys, P.H. (Eds,), pp. 281322. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Gucsik, A., Koeberl, C., Brandstätter, F., Libowitzky, E. & Reimold, W.U. (2003). Scanning electron microscopy, cathodoluminescence, and Raman spectroscopy of experimentally shock metamorphosed quartzite. Meteorit Planet Sci 38, 11871197.CrossRefGoogle Scholar
Gucsik, A., Koeberl, C., Brandstätter, F., Reimold, W.U. & Libowitzky, E. (2002). Cathodoluminescence, electron microscopy, and Raman spectroscopy of experimentally shock-metamorphosed zircon. Earth Planet Sci Lett 202, 495510.CrossRefGoogle Scholar
Ikenaga, M., Nishido, H. & Ninagawa, K. (2000). Preformance and analytical conditions of cathodoluminescence scanning electron microscope (CL-SEM). Bull Res Inst Nat Sci 26, 6175.Google Scholar
Kayama, M., Nishido, H., Sekine, T., Nakazato, T., Gucsik, A. & Ninagawa, K. (2012). Shock barometer using cathodoluminescence of alkali feldspar. J Geophys Res 117, E09007.Google Scholar
Kayama, M., Nishido, H., Toyoda, S., Komuro, K. & Ninagawa, K. (2011). Radiation effects on cathodoluminescence of albite. Am Mineral 96, 12381247.CrossRefGoogle Scholar
Kayama, M., Gucsik, A., Nishido, H., Ninagawa, K. & Tsuchiyama, A. (2009). Cathodoluminescence and Raman spectroscopic characterization of experimentally shocked plagioclase. AIP Conf Proc 1163, 8695.CrossRefGoogle Scholar
Kovach, H.A. & Jones, R.H. (2010). Feldspar in type 4-6 ordinary chondrites: Metamorphic processing on the H and LL chondrite parent bodies. Meteorit Planet Sci 45, 246264.CrossRefGoogle Scholar
Langenhorst, F., Harries, D., Pollok, K. & Van Aken, P.A. (2014). Mineralogy and defect microstructure of an olivine-dominated Itokawa dust particle: Evidence for shock metamorphism, collisional fragmentation, and LL chondrite origin. Earth Planets Space 66, 118.CrossRefGoogle Scholar
Lee, M.R., Parsons, I., Edwards, P.R. & Martin, R.W. (2007). Identification of cathodoluminescence activators in zoned alkali feldspars by hyperspectral imaging and electron-probe microanalysis. Am Mineral 92, 243253.CrossRefGoogle Scholar
Marfunin, A.S. (1979). Spectroscopy, Luminescence and Radiation Centers in Minerals. Berlin: Springer Verlag. . p 356.CrossRefGoogle Scholar
Mariano, A.N., Ito, J. & Ring, P.J. (1973). Cathodoluminescence of plagioclase feldspars. Geol Soc Am Abstract Prog 5, 726.Google Scholar
Mckeown, A.D. (2005). Raman spectroscopy and vibrational analyses of albite: From 25 °C through the melting temperature. Am Mineral 90, 15061517.CrossRefGoogle Scholar
Mcsween, H.Y. & Labotka, T.C. (1993). Oxidation during metamorphism of the ordinary chondrites. Geochim Cosmochim Acta 57, 11051114.CrossRefGoogle Scholar
Nakamura, T., Nakato, A., Ishida, H., Wakita, S., Noguchi, T., Zolensky, M.E., Tanaka, M., Kimura, M., Tsuchiyama, A., Ogami, T., Hashimoto, T., Konno, M., Uesugi, M., Yada, T., Shirai, K., Fujimura, A., Okazaki, R., Sandford, S.A., Ishibashi, Y., Abe, M., Okada, T., Ueno, M. & Kawaguchi, J. (2014). Mineral chemistry of MUSES-C Regio inferred from analysis of dust particles collected from the first- and second-touchdown sites on asteroid Itokawa. Meteorit Planet Sci 49, 215227.CrossRefGoogle Scholar
Nakamura, T., Noguchi, T., Tanaka, M., Zolensky, M.E., Kimura, M., Tsuchiyama, A., Nakato, A., Ogami, T., Ishida, H., Uesugi, M., Yada, T., Shirai, K., Fujimura, A., Okazaki, R., Sandford, S.A., Ishibashi, Y., Abe, M., Okada, T., Ueno, M., Mukai, T., Yoshikawa, M. & Kawaguchi, J. (2011). Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science 333, 11131116.CrossRefGoogle ScholarPubMed
Nishido, H., Endo, T., Ninagawa, K., Kayama, M. & Gucsik, A. (2013). Thermal effects on cathodoluminescence in forsterite. Geochronometria 40, 239243.CrossRefGoogle Scholar
Parsons, I., Steele, D.A., Lee, M.R. & Magee, C.W. (2008). Titanium as a cathodoluminescence activator in alkali feldspar. Am Mineral 93, 875879.CrossRefGoogle Scholar
Ramseyer, K., Aldahan, A.A., Collini, B. & Lindström, O. (1992). Petrological modifications in granitic rocks from the Siljan impact structure: Evidence from cathodoluminescence. Tectonophysics 216, 195204.CrossRefGoogle Scholar
Sears, D.W.G., Ninagawa, K. & Singhvi, A.K. (2013). Luminescence studies of extraterrestrial materials: Insights into their recent radiation and thermal histories and into their metamorphic history. Chem Erde Geochem 73, 137.CrossRefGoogle Scholar
Sippel, R.F. & Spencer, A.B. (1970). Cathodoluminescence properties of lunar rocks. Science 167, 677679.CrossRefGoogle ScholarPubMed
Stöffler, D., Keil, K. & Scott, E.R.D. (1991). Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55, 38453867.CrossRefGoogle Scholar
Telfer, D.J. & Walker, G. (1978). Ligand field bands of Mn2+ and Fe3+ luminescence centers and their site occupancy in plagioclase feldspar. Mod Geol 6, 199210.Google Scholar
Telfer, D.J. & Walker, G. (1975). Optical detection of Fe3+ in lunar plagioclase. Nature 258, 694695.CrossRefGoogle Scholar
Tomioka, N., Kondo, H., Kunikata, A. & Nagai, T. (2010). Pressure-induced amorphization of albitic plagioclase in an externally heated diamond anvil cell. Geophys Res Lett 37, L21301.CrossRefGoogle Scholar
Tsuchiyama, A., Uesugi, M., Matsushima, T., Michikami, T., Kadono, T., Nakamura, T., Uesugi, K., Nakano, T., Sandford, S.C., Noguchi, R., Matsumoto, T., Matsuno, J., Nagano, T., Imai, Y., Takeuchi, A., Suzuki, Y., Ogami, T., Katagiri, J., Ebihara, M., Ireland, T.R., Kitajima, H., Zolensky, M.E., Mukai, T., Abe, M., Yada, T., Fujimura, A., Yoshikawa, M. & Kawaguchi, J. (2011). Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith. Science 333, 11251128.CrossRefGoogle ScholarPubMed
Yacobi, B.G. & Holt, D.B. (1990). Cathodoluminescence Microscopy of Inorganic Solids. New York: Plenum Press. p 292.CrossRefGoogle Scholar