Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T02:11:22.571Z Has data issue: false hasContentIssue false

Radiocarbon Pretreatment Comparisons of Bald Cypress (Taxodium Distichum) wood samples from a massive buried deposit on the Georgia Coast, USA

Published online by Cambridge University Press:  11 October 2019

Katharine G Napora*
Affiliation:
Department of Anthropology, University of Georgia, Athens, GA, USA Center for Applied Isotope Studies, University of Georgia, Athens, GA, USA
Alexander Cherkinsky
Affiliation:
Center for Applied Isotope Studies, University of Georgia, Athens, GA, USA
Robert J Speakman
Affiliation:
Department of Anthropology, University of Georgia, Athens, GA, USA Center for Applied Isotope Studies, University of Georgia, Athens, GA, USA
Victor D Thompson
Affiliation:
Department of Anthropology, University of Georgia, Athens, GA, USA
Robert Horan
Affiliation:
Georgia Department of Natural Resources, Wildlife Resources Division, Brunswick, GA, USA
Craig Jacobs
Affiliation:
Georgia Department of Natural Resources, Wildlife Resources Division, Brunswick, GA, USA
*
*Corresponding author. Email: knapora@uga.edu.

Abstract

We sampled individual growth rings from three ancient remnant bald cypress (Taxodium distichum) trees from a massive buried deposit at the mouth of the Altamaha River on the Georgia Coast to determine the best technique for radiocarbon (14C) dating pretreatment. The results of our comparison of traditional ABA pretreatment and holocellulose and α-cellulose fractions show no significant differences among the pretreatments (<1 sigma) thereby suggesting that ABA pretreatment will prove sufficient for the development of a high-resolution 14C tree-ring chronology based on these ancient bald cypresses which will indicate whether the U.S. Southeast is subject to a regional radiocarbon offset.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.10.1017/S0033822200033865CrossRefGoogle Scholar
Chanton, JP, Cherrier, J, Wilson, RM, Sarkodee-Adoo, J, Bosman, S, Mickle, A, Graham, WM. 2012. Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico. Environmental Research Letters 7:045303.10.1088/1748-9326/7/4/045303CrossRefGoogle Scholar
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nuclear Instruments and Methods in Physical Research B 258(7–8):867870.CrossRefGoogle Scholar
Dellinger, F, Kutschera, W, Nicolussi, K, Schießling, P, Steier, P, Wild, EM. 2004. A 14C calibration with AMS from 3500 to 3000 BC, derived from a new high-elevation stone-pine tree-ring chronology. Radiocarbon 46(2):969978.10.1017/S0033822200036031CrossRefGoogle Scholar
Hajdas, I, Hendricks, L, Fontana, A, Monegato, G. 2016. Evaluation of preparation methods in radiocarbon dating of old wood. Radiocarbon 59(3):727737.10.1017/RDC.2016.98CrossRefGoogle Scholar
Hogg, A, Palmer, J, Boswijk, G, Turney, C. 2011. High-precision radiocarbon measurements of tree-ring dated wood from New Zealand: 195 BC–AD 995. Radiocarbon 53(3):529542.10.1017/S0033822200034639CrossRefGoogle Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 Years cal. BP. Radiocarbon 55(4):18891903.10.2458/azu_js_rc.55.16783CrossRefGoogle Scholar
Hong, W, Park, JH, Park, G, Sung, KS, Park, WK, Lee, JG. 2013. Regional offset of radiocarbon concentration and its variation in the Korean atmosphere from AD 1650–1850. Proceedings of the 21st International Radiocarbon Conference (Part 1 of 2). Radiocarbon 55(2):753762.CrossRefGoogle Scholar
Jackson, LWR. 1952. Radial growth of forest trees in the Georgia Piedmont. Ecology 33(3):336341.CrossRefGoogle Scholar
Jull, AJT, Panyushkina, IP, Lange, TE, Kukarskih, VV, Myglan, VS, Clark, KJ, Salzer, MW, Burr, GS, Leavitt, SW. 2014. Excursions in the 14C record at AD 774–775 in tree rings from Russia and America. Geophysical Research Letters 41. doi: 10.1002/2014GL059874.CrossRefGoogle Scholar
Knox, AS. 1966. The Walker Interglacial Swamp, Washington, D.C. Journal of the Washington Academy of Sciences 56(1):18.Google Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294(5551):25292532.10.1126/science.1066114CrossRefGoogle ScholarPubMed
Manning, SW, Griggs, C, Lorentzen, B, Bronk Ramsey, C, Chivall, D, Jull, AJT, Lange, TE. 2018. Fluctuating radiocarbon offsets observed in the southern Levant and implications for archaeological chronology debates. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1719420115.CrossRefGoogle Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486:240242.10.1038/nature11123CrossRefGoogle Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748. doi: 10.1038/ncomms2783.CrossRefGoogle ScholarPubMed
Nakamura, T, Kimiaki, M, Miyake, F, Nagaya, K, Yoshimitsu, T. 2013. Radiocarbon ages of annual rings from Japanese wood: evident age offset based on IntCal09. Radiocarbon 55(2–3):763770.CrossRefGoogle Scholar
Neuhäuser, R, Neuhäuser, DL. 2011. Variations of 14C around AD 775 and AD 1795 – due to solar activity. Astronomische Nachrichten 336:930954.10.1002/asna.201512208CrossRefGoogle Scholar
Pearson, CL, Brewer, PW, Brown, D, Heaton, TJ, Hodgins, GWL, Jull, AJT, Lange, T, Salzer, MW. 2018. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances 4(8):eaar8241. doi: 10.1126/sciadv.aar8241.CrossRefGoogle ScholarPubMed
Reimer, P, Bard, E, Bayliss, A, Beck, J, Blackwell, P, Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Nui, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, Van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.10.2458/azu_js_rc.55.16947CrossRefGoogle Scholar
Santos, GM, Bird, MI, Fifield, LK, Alloway, BV, Chappell, J, Hausladen, PA, Arneth, A. 2001. Radiocarbon dating of wood using different pretreatment procedures: application to the chronology of Rotoehu Ash, New Zealand. Radiocarbon 43(2A):239248.10.1017/S0033822200038066CrossRefGoogle Scholar
Santos, GM, Ormsby, K. 2013. Behavioral variability in ABA chemical pretreatment close to the 14C age limit. Radiocarbon 55(2–3):534544.CrossRefGoogle Scholar
Seager, R, Tzanova, A, Nakamura, J. 2009. Drought in the Southeastern United States: causes, variability over the last millennium, and the potential for future hydroclimate change. Journal of Climate 22:50215045.CrossRefGoogle Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(2–3):13711379.10.1017/S0033822200046452CrossRefGoogle Scholar
Stahle, DW. 1985. Altamaha River- TADI- ITRDB GA002. International Tree-Ring Databank. National Centers for Environmental Information. NOAA. Available at https://www.ncdc.noaa.gov/paleo/study/4808. Accessed March 15, 2018.Google Scholar
Stahle, DW, Burnette, DJ, Villanueva, J, Cerano, J, Fye, FK, Griffin, RD, Cleaveland, MK, Stahle, DK, Edmondson, JR, Wolff, KP. 2012. Tree-ring analysis of ancient bald cypress trees and subfossil wood. Quaternary Science Reviews 34:115.10.1016/j.quascirev.2011.11.005CrossRefGoogle Scholar
Stahle, DW, Cleaveland, MK. 1992. Reconstruction and analysis of spring rainfall over the Southeastern U.S. for the past 1000 years. Bulletin of the American Meteorological Society 73:19471961.10.1175/1520-0477(1992)073<1947:RAAOSR>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Stahle, DW, Cleaveland, MK. 1996. Large-scale climatic influences on bald cypress tree growth across the Southeastern United States. Climatic Variation and Forcing Mechanisms of the Last 2000 Years. NATO Advanced Science Institute Series, Vol. 41:125140. Berlin: Springer-Verlag.Google Scholar
Stahle, DW, Cook, ER, White, JWC. 1985. Tree-ring dating of bald cypress and the potential for millennia-long chronologies in the Southeast. American Antiquity 50(4):796802.CrossRefGoogle Scholar
Vogel, JS, Southen, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 23(5):289293.10.1016/0168-583X(84)90529-9CrossRefGoogle Scholar
Walker, BD, Druffel, ERM, Kolasinski, J, Roberts, BJ, Xu, X, Rosenheim, BE. 2017. Stable and radiocarbon isotopic composition of dissolved organic matter in the Gulf of Mexico. Geophysical Research Letters 44(16):84248434. doi: 10.1002/2017GL074155.CrossRefGoogle Scholar