Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T08:37:49.968Z Has data issue: false hasContentIssue false

Diagnostic Tools Using a Multi-Constellation Single-Receiver Single-Satellite Data Validation Method

Published online by Cambridge University Press:  13 August 2014

Ahmed El-Mowafy*
Affiliation:
(Department of Spatial Sciences, Curtin University, Australia)

Abstract

The use of single-receiver single-satellite data validation parameters for numerical and graphical diagnostics of the multi-frequency observations is presented. This method validates Global Navigation Satellite System (GNSS) measurements of a single receiver where data from each satellite are independently processed using a geometry-free observation model with a reparameterised form of the unknowns. The method is applicable to any GNSS with any number of frequencies. The diagnostic tools are based on checking agreement of characteristics of the validation test statistics against theory. The use of these diagnostics in static and kinematic modes is demonstrated using multiple-frequency data from three GNSS constellations; Global Positioning System (GPS), Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) and Galileo.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baarda, W.A. (1968). Testing Procedure for Use in Geodetic Networks. Netherlands Geodetic Commission, Publications on Geodesy, New Series 2(5), Netherlands.Google Scholar
Blewitt, G. (1990). An Automatic Editing Algorithm for GPS Data. Geophysical Research Letters, 17(3), 199202.CrossRefGoogle Scholar
Banville, S. and Langley, R.B. (2010). Instantaneous Cycle-Slip Correction for PPP. Navigation, 57(4), 325334.CrossRefGoogle Scholar
De Bakker, P.F., Van der Marel, H. and Teunissen, P.J.G. (2009). The Minimal Detectable Bias for GNSS Observations with a Single Receiver Setup and a Geometry-Free Model. Proceedings of ENC-GNSS 2009, Naples, Italy, 3–6 May 2009.Google Scholar
De Jong, K., Van der Marel, H. and Jonkman, N. (2001). Real-Time GPS and Glonass Integrity Monitoring and Reference Station Software. Physics and Chemistry of the Earth (A), 26(6–8), 545549.CrossRefGoogle Scholar
El-Mowafy, A. (2013). Real-Time Validation of BeiDou Observations in a Stand-alone Mode, Proceedings of ION Pacific PNT conference, Honolulu, Hawaii, April 22–25, 2013.Google Scholar
El-Mowafy, A. (2014a). GNSS Multi-frequency Receiver Single-Satellite Measurement Validation Method, GPS Solutions, Published online, 2014, DOI 10.1007/s10291-013-0352-6.Google Scholar
El-Mowafy, A. (2014b). Estimation of Multi-Constellation GNSS Observation Stochastic Properties Using a Single-Receiver Single-Satellite Data Validation Method, Survey Review, Published online, 2014, DOI 10.1179/1752270614Y.0000000100.CrossRefGoogle Scholar
El-Mowafy, A., Teunissen, P.J.G. and Odijk, D. (2010). Single-Receiver Single-Satellite Real-Time Validation of GPS, GLONASS, Galileo and COMPASS Data. Proceedings of the International Symposium on GPS/GNSS, Taipei, Taiwan, 26–28 Oct. 2010Google Scholar
El-Mowafy, A. (2009). An Alternative Post-Processing Relative Positioning Approach Based on Precise Point Positioning. Journal of Surveying Engineering, 135(2), 5665.Google Scholar
Ene, A., Blanch, J. and Powell, J.D. (2007). Fault Detection and Elimination for Galileo-GPS Vertical Guidance, Proceedings of the Institute of Navigation National Technical Meeting, San Diego, CA, 22–24 January 2007.Google Scholar
Euler, H.J. and Goad, C.C. (1991). On optimal Filtering of GPS Dual-Frequency Observations without Using Orbit Information. Bulletin Géodésique, 65, 130143.Google Scholar
Farrell, J. L. and Van Graas, F. (1992). Statistical validation for GPS integrity test. Navigation, 39(2), 205216.Google Scholar
Gelb, A. (1974). Applied Optimal Estimation. Massachusetts Institute of Technology Press, Cambridge, Ma.Google Scholar
Gui, Q., Li, X., Gong, Y., Li, B. and Li, G. (2011). A Bayesian unmasking method for locating multiple gross errors based on posterior probabilities of classification variables. Journal of Geodesy, 85, 191203.Google Scholar
Hawkins, D. M. (1980). Identification of outliers. Chapman and Hall, New York.Google Scholar
Hekimoglu, S. and Berber, M. (2003). Effectiveness of robust methods in heterogeneous linear models. Journal of Geodesy, 76, 706713.Google Scholar
Hewitson, S. and Wang, J. (2007). GNSS Receiver Autonomous Integrity Monitoring (RAIM) with a dynamic model. Journal of Navigation, 60(2), 247263.Google Scholar
Hwang, P. and Brown, R.G. (2008). From RAIM to NIORAIM. Inside GNSS, 3(4), 2433.Google Scholar
Kim, D., Langley, R.B. (2002). Instantaneous Real-Time Cycle-Slip Correction for Quality Control of GPS Carrier-phase Measurements. Navigation, 49(4), 205222.Google Scholar
Knight, N.L., Wang, J. and Rizos, C. (2010). Generalised Measures of Reliability for Multiple Outliers. Journal of Geodesy, 84(10), 625635.Google Scholar
Lehmann, R. (2012). Improved critical values for extreme normalized and studentized residuals in Gauss–Markov models. Journal of Geodesy, 86, 11371146.CrossRefGoogle Scholar
Marsaglia, G., Tsang, W. and Wang, J. (2003). Evaluating Kolmogorov's Distribution. Journal of Statistical Software, 8(18), 14.Google Scholar
Neri, P., Azoulai, L. and Macabiau, C. (2011). Study of the Temporal Behavior of GPS/GALILEO NSE and RAIM for LPV200. Proceedings of ION GNSS 2011, Oregon, Portland, 19–23 September 2011.Google Scholar
Teunissen, P. J. G. and De Bakker, P. F. (2012a). Single-receiver single-channel multi-frequency GNSS integrity: outliers, slips, and ionospheric disturbances. Journal of Geodesy, 87(2), 161177.Google Scholar
Teunissen, P.J.G. and De Bakker, P.F. (2012b). Next Generation GNSS Single Receiver Cycle Slip Reliability. Proceedings VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy Symposia, 137, 159164.Google Scholar
Teunissen, P.J.G. and Kleusberg, A. (1998). GPS for Geodesy. 2nd ed., Springer, NY.CrossRefGoogle Scholar
Teunissen, P.J.G. (1990). Quality Control in Integrated Navigation Systems. IEEE Aerospace and Electronic Systems Magazine, 5(7), 3541.CrossRefGoogle Scholar
Yang, L., Wang, J., Knight, N. L. and Shen, Y. (2013a). Outlier separability analysis with a multiple alternative hypotheses test. Journal of Geodesy, 87(6), 591604.Google Scholar
Yang, L., Knight, N.L., Li, Y. and Rizos, C. (2013b). Optimal Fault Detection and Exclusion Applied in GNSS Positioning. The Journal of Navigation, 66(5), 683700.Google Scholar