Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T11:17:22.073Z Has data issue: false hasContentIssue false

PreDICT: a graphical user interface to the DICVOL14 indexing software program for powder diffraction data

Published online by Cambridge University Press:  05 August 2019

Justin R. Blanton
Affiliation:
International Centre for Diffraction Data, Newtown Square, PA 19073-3273
Robert J. Papoular*
Affiliation:
Saclay Institute for Matter and Radiation (IRAMIS), Leon Brillouin Laboratory, CEA/CEN-Saclay, 91191 Gif-sur-Yvette, France
Daniel Louër
Affiliation:
Retired from Centre National de la Recherche Scientifique and Université de Rennes I, Rennes, France
*
a)Author to whom correspondence should be addressed. Electronic mail: robert.papoular@cea.fr

Abstract

A straightforward intuitive user-friendly compact graphical interface, PreDICT (Premier DICVOL Tool) has been developed to take full advantage of the new capabilities of the most recent version of the DICVOL14 Indexing Software. The latter, an updated version of DICVOL04, includes optimizations, e.g. for monoclinic and triclinic cases, a detailed review of the input data from the indexing solutions, cell centering tests, as well as the handling of a moderate number of impurity peaks. Among the most salient features of PreDICT, one can mention the ability (1) to use 2θ non-equistepped input 1D X-ray powder diffraction patterns as can be obtained from 2D detectors, (2) to strip laboratory data from its 2 contribution when present, (3) to generate 2θ equistepped output 1D X-ray powder diffraction patterns in both the “.XY” and “.GSA” formats. In addition, PreDICT allows for the following features: (1) full access to the native DICVOL14 input/output ASCII file system is retained, (2) for any selection of a DICVOL14 suggested unit cell, all predicted Bragg peaks up to a certain 2θMAX value are clearly displayed and indicated, thereby emphasizing the contribution of the unaccounted peaks (if any) to the 1D X-ray powder diffraction pattern under current investigation.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALBULA Software. (2015). Version 3.2.0, published by DECTRIS Ltd. https://www.dectris.com/products/albula-software.Google Scholar
Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A., Rizzi, R., and Werner, P.-E. (2000). “New techniques for indexing: N-TREOR in EXPO,” J. Appl. Crystallogr. 33, 11801186.Google Scholar
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data”, J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bergmann, J., Le Bail, A., Shirley, R., and Zlokazov, V. (2004). “Renewed interest in powder diffraction indexing,” Z. Kristallogr. 219, 783790.Google Scholar
Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.Google Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.Google Scholar
Burzlaff, H., Zimmerman, H., and de Wolff, P. M. (1983). “9. Crystal lattices,” in International Tables for Crystallography, edited by Hahn, T. (D. Reidel Publ. Co, Dordrecht), vol. A, pp. 733744.Google Scholar
Coelho, A. A. (2017). “An indexing algorithm independent of peak position extraction for X-ray powder diffraction patterns,” J. Appl. Crystallogr. 50, 13231330.Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data.” J. Appl. Crystallogr. 39, 910915.Google Scholar
De Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, free objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: The Powder Diffraction File™,” Powder Diffr. 32, 6371.Google Scholar
Horwitz, N. E., Xie, J., Filatov, A. S., Papoular, R. J., Shepard, W. E., Zee, D. Z., Grahn, M. P., Gilder, C., and Anderson, J. S. (2019). “Redox-active 1D coordination polymers of iron-sulfur clusters,” J. Am. Chem. Soc. 141, 39403951.Google Scholar
ICDD (2019). PDF-4+ 2019 (Database), edited by Dr. Soorya Kabekkodu (International Centre for Diffraction Data, Newtown Square, PA, USA).Google Scholar
Kourkoumelis, N. (2013). “PowDLL, a reusable .NET component for interconverting powder diffraction data: recent developments,” ICDD Annual Spring Meetings, (ed. Lisa O'Neill), Powder Diffr. 28, 137148.Google Scholar
Langford, J. I. and Louër, D. (1996). “Powder diffraction,” Rep. Prog. Phys. 59, 131234.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report No. LAUR 86-748), Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Le Bail, A. (2005). “Whole pattern decomposition methods and applications: a retrospection,” Powder Diffr. 20, 316326.Google Scholar
Louër, D. (1992). “Automatic indexing: procedure and applications,” Natl. Inst. Standards Technol. Special Publication 846, 92104.Google Scholar
Louër, D. and Louër, M. (1972). “Méthode d’ Essais et Erreurs pour l'indexation automatique des diagrammes de Poudre,” J. Appl. Crystallogr. 5, 271275.Google Scholar
Louër, D. and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powder Diffr. 29(S2), S7S12.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
Putz, H. and Brandenburg, K. (2018). “MATCH! Phase Identification from Powder Diffraction,” CRYSTAL IMPACT. https://www.crystalimpact.de/match.Google Scholar
Rachinger, W. A. (1948). “A correction for the α 1α 2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254255.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Roisnel, T. and Rodriguez-Carvajal, J. (2001). “WinPLOTR: a windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum. 378–381, 118123.Google Scholar
Royappa, A. T., Tran, C. M., Papoular, R. J., Khan, M., Marbella, L. E., Millstone, J. E., Gembicky, M., Chen, B., Shepard, W., and Elkaïm, E. (2018). “Copper(I) and Gold(I) thiolate precursors to bimetallic nanoparticles,” Polyhedron. 155, 359365.Google Scholar
Santoro, A and Mighell, A. D. (1970). “Determination of reduced cells,” Acta Crystallogr. A26, 124127.Google Scholar
Savitzky, A. and Golay, M. J. E. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.Google Scholar
Shirley, R. (1980). “Data accuracy for powder indexing,” Natl. Bureau Standards Special Publication 567, 361382.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Sonnefeld, E. J. and Visser, J. W. (1975). “Automatic collection of powder data from photographs,” J. Appl. Crystallogr. 8, 17.Google Scholar
Tazzoli, V. and Domeneghetti, C. (1980). “The crystal structures of whewellite and weddellite: re-examination and comparison,” Am. Mineral. 65, 327334.Google Scholar
Supplementary material: File

Blanton et al. supplementary material

Blanton et al. supplementary material
Download Blanton et al. supplementary material(File)
File 564.1 KB