Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T01:35:53.760Z Has data issue: false hasContentIssue false

Nanostructural characterization of mesoporous hematite thin film photoanode used for water splitting

Published online by Cambridge University Press:  14 October 2013

Ricardo H. Goncalves
Affiliation:
Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, SP, Brazil
Edson R. Leite*
Affiliation:
Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, SP, Brazil
*
a)Address all correspondence to this author. e-mail: edson.leite@pq.cnpq.br
Get access

Abstract

By combining high-resolution transmission electron microscopy and scanning transmission electron microscopy with analytical capability, we investigated the nanostructure of a textured hematite photoanode with columnar grains obtained by the colloidal deposition of magnetite nanocrystals. This initial report describes in detail the structure and chemistry of the α-Fe2O3/SnO2:F interface by identifying semicoherent and incoherent interfaces as well as a localized interdiffusion layer of Sn and Fe at the interface (∼100 nm in length). Our study indicates that unintentional doping by tin at a high sintering temperature is not significant in enhancing hematite photoanode performance for water oxidation. The correlation of nanoscale morphology with photoelectrochemical characterization facilitated the identification of the beneficial effect of a preferential growth direction of a hematite film along the [110] axis for water-splitting efficiency.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dare-Edwards, M.P., Goodenough, J.B., Hamnett, A., and Trevellick, P.R.: Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc., Faraday Trans. 79, 20272041 (1983).Google Scholar
Itoh, K. and Bockris, J.O.: Stacked thin-film photoelectrode using thin-film photoelectrochemistry – iron-oxide. J. Electrochem. Soc. 131, 1266 (1984).CrossRefGoogle Scholar
Bjorkstbn, U., Moser, J., and Gratzel, M.: Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 6, 858863 (1994).Google Scholar
Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., and Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J.Hydrogen Energy 31, 19992017 (2006).CrossRefGoogle Scholar
Kennedy, J. and Frese, K.J.: Photooxidation of water at α-Fe2O3 electrodes. Electrochem. Soc. 125, 709 (1978).CrossRefGoogle Scholar
Morin, F.J.: Electrical properties of alpha-Fe2O3 and alpha Fe2O3 containing titanium. Phys. Rev. 83, 1005 (1951).CrossRefGoogle Scholar
Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 64466473 (2010).Google Scholar
Sivula, K., Le Formal, F., and Grätzel, M.: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chem. Sus. Chem. 4, 432449 (2011).Google Scholar
Tilley, S.D., Cornuz, M., Sivula, K., and Gratzel, M.: Light-inducedwater splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 15 (2010).Google Scholar
Lin, Y., Zhou, S., Sheehan, S.W., and Wang, D.: Nanonet-based hematite heteronanostructures for efficient solar water splitting. J. Am. Chem. Soc. 133(8), 23982401 (2011).CrossRefGoogle ScholarPubMed
Le Formal, F., Gratzel, M., and Sivula, K.: Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20, 10991107 (2010).CrossRefGoogle Scholar
Klahr, B.M., Martinson, A.B.F., and Hamann, T.W.: Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27(1), 461468 (2011).Google Scholar
Lukowski, M.A. and Jin, S.: Improved synthesis and electrical properties of Si-doped α-Fe2O3 nanowires. J. Phys. Chem. C 115, 1238812395 (2011).CrossRefGoogle Scholar
Jang, J.S., Lee, J., Ye, H., Fan, F.R.F., and Bard, A.J.: Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical mcroscopy and investigation of their photoelectrochemical properties. J. Phys. Chem. C 113(16), 6796724 (2009).CrossRefGoogle Scholar
Satsangi, V.R., Kumari, S., Singh, A.P., Shrivastav, R., and Dass, S.: Iron doped TiO2 for photoelectrochemical generation of hydrogen. Int. J. Hydrogen Energy 33(1), 312318 (2008).Google Scholar
Franking, R., Li, L., Lukowski, M.A., Meng, F., Tan, Y., Hamers, R.J., and Jin, S.: Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energy Environ. Sci. 6, 500512 (2013).Google Scholar
Ling, Y., Wang, G., Wheeler, D.A., Zhang, J.Z., and Li, Y.: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11(5), 21192125 (2011).CrossRefGoogle ScholarPubMed
Sivula, K., Zboril, R., Formal, L., Robert, R.F., Weidenkaff, A., Tucek, J., Frydrych, J., and Gratzel, M.: Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132, 74367444 (2010).Google Scholar
Iordanova, N., Dupuis, M., and Rosso, K.M.: Charge transport in metal oxides: A theoretical study of hematite alpha-Fe2O3 . J. Chem. Phys. 122, 144305 (2005).Google Scholar
Nakau, T.: Electrical conductivity of alfa-Fe2O3 . J. Phys. Soc. Jpn. 15, 727 (1960).Google Scholar
Benjelloun, J.P.D., Bonnet, J.P., Doumerc, J.C., Launay, M., Onillon, P., and Hagenmuller, P.: Anysotropic electronic properties of the iron oxide (α-Fe2O3). Mater. Chem. Phys. 10, 503 (1984).CrossRefGoogle Scholar
Yanina, S.V. and Rosso, K.M.: Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320, 218222 (2008).Google Scholar
Kay, A., Cesar, I., and Gratzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714 (2006).CrossRefGoogle ScholarPubMed
Cesar, I., Sivula, K., Kay, A., Zboril, R., and Gratzel, M.: Influence of feature size, film thickness and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772782 (2009).Google Scholar
Campbell, A.S., Schwertmann, U., Stanjek, H., Friedl, J., Kyek, A., and Campbell, P.A.: Si incorporation into hematite by hear- ing Si- ferrihydrite. Langmuir 18, 78047809 (2002).Google Scholar
Hahn, N.T., Ye, H., Flaherty, D.W., Bard, A.J., and Mullins, C.B.: Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano 4, 19771986 (2010).Google Scholar
Vayssieres, L., Beermann, N., Lindquist, S.E., and Hagfeldt, A.: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 13, 233 (2001).Google Scholar
Goncalves, R.H., Lima, B.H.R., and Leite, E.R.: Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J. Am. Chem. Soc. 133, 60126019 (2011).Google Scholar