Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T12:07:11.298Z Has data issue: false hasContentIssue false

Transcription of paternal Y-linked genes in the human zygote as early as the pronucleate stage

Published online by Cambridge University Press:  26 September 2008

Asangla Ao*
Affiliation:
Institute of Obstetrics and Gynaecology, Royal Postgraduate Medical School, UK, and Department of Pediatrics, The University of Arizona, Tucson, USA
Robert P. Erickson
Affiliation:
Institute of Obstetrics and Gynaecology, Royal Postgraduate Medical School, UK, and Department of Pediatrics, The University of Arizona, Tucson, USA
Robert M.L. Winston
Affiliation:
Institute of Obstetrics and Gynaecology, Royal Postgraduate Medical School, UK, and Department of Pediatrics, The University of Arizona, Tucson, USA
Alan H Handysude
Affiliation:
Institute of Obstetrics and Gynaecology, Royal Postgraduate Medical School, UK, and Department of Pediatrics, The University of Arizona, Tucson, USA
*
A. Ao, phD, Institute of Obstetrics and Gynaecology, Roly postgraduate Medical shool, Hommersmith Hospital, Du Cane Road, London W12 ONN, UK. Telephone: 081-743-2030, ext 2084. Fax: 081-749-6973.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Global activation of the embryonic genome occurs at the 4– to 8–cell stage in human embryos and is marked by continuation of early cleavage divisions in the presence of transcriptional inhibitors. Here we demonstrate, using recerse transcripase–polymerase chin reaction (Rt–PCR), the presence of transcripts for wo paternal Y chromosomal genes, ZFY and SRY in human preimplantation embryos. ZFY transcripts were detected as early as the pronucleate stage, 20–24 h post-insemination In vitro and at intermediate stages up to the blastocyst stage. SRY Transcripts were also detected at 2–cell to blastocyos observed in many mammalian species focuses attention on the role of events in six determination prior to gonad differentiation.

Type
Article
Copyright
Copyright © Cambridge University Press 1994

References

Avery, B., Jorgensen, C.B., Madieson, V.. Grere, T.. (1992). Morphological development and sex of boving in vitrofertilized embryos. Mol. Reprod. Deu. 32, 265–70.CrossRefGoogle Scholar
Bachvarova, R. & DeLeon, V.. (1980). Polyadenylated RNA of the mouse ova and loss of maternal RNA in early development. Dev. Biol. 74, 18.CrossRefGoogle ScholarPubMed
Bensaude, O., Babinet, C., Morange, M.. Jacob, F.. (1983). Heat shock proteins, first major products zygotic gene activity. Nature 305, 331–3.CrossRefGoogle ScholarPubMed
Bolton, V.N., Oades, P.J.. Johnson, M.H.. (1984). The relationship between cleacage, DNA replication, and gene expression in the mouse 2-cell embryo. J. Embryol. Exp. Morphol. 79, 139–63.Google ScholarPubMed
Bonduelle, M.L., Dodd, R., Leibaers, I., VanSteirtghem, A., Williamson, R.. Akhurts, T.. (1998). Chorionic gonadotrophin-α mRNA, a trophoblast marker. is experssed in human 8-cell embryos derived from tripronucleate zygotes. Hum. Reprod. 83, 909–14.Google Scholar
Bourgoyne, P.S.. (1993). A Y-chromosomal effect on blastocyst cell number in mice. Development 117, 341–5.CrossRefGoogle Scholar
Braude, P., Pelham, H., Flach, G.. Lobatto, R.. (1979). Posttranscripional control in the early mouse embryo. Nature 282, 102–5.CrossRefGoogle ScholarPubMed
Braude, P., Bolton, V..& Moore, S.. (1988). Human gene expression first occurs between the four-and eight-Cell stages of preimplation development. nature 332, 450–61.CrossRefGoogle ScholarPubMed
Camouse, S., Kopecny, V.. Flechon, J.E.. (1986). Autoradiographic detection of the earliest stage of3H-uridine incorporation in the cow embryo. Biology of Cell 58, 195200.CrossRefGoogle Scholar
Chelly, J., Concordet, J.P., Kaplan, J.C.. Kahn, A.. (1989). I II egitimate transcription: transcription of any gene in any cell type. Proc. Natl. Acad. Sci. USA 86, 2617–21.CrossRefGoogle Scholar
Clegg, K.B.. Pike, L.. (1982). RNA synthesis and cytopasmic polyadenylation in the one-cell mouse embryo. Nature 295, 342–5.CrossRefGoogle Scholar
Clegg, K.B.. Piko, L.. (1983a). Quantitativeaspects of RNA synthesis and polyenylation in 1-cell and 2-cell mouse embryos. J. Embryol. Exy. Morphol. 74, 169–82,Google Scholar
Clegg, K.B.. Piko, L.. (1983b). Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+ RNA in early mouse embryo. Devel. Biol. 95, 331–41.CrossRefGoogle Scholar
Crosby, I.M., Gandolfi, F.. Moor, R.M.. (1988). Control of protein synthesis during early cleavage of sheep embrryos. J. Reprod. Fert. 82, 769–75.CrossRefGoogle Scholar
Epstein, C.J., Simith, S., Davis, B.. (1980). Expression of H-Y antigen on preimplantation mouse embryos. Tissue Antigens 15, 63–7.CrossRefGoogle ScholarPubMed
Flach, G., Johnson, M.H., Braude, P.R., Tayloy, RAS, Bolton, V.N.. (1982). The transcription from maternal to embryonic control in 2-cell mouse embryo. EMBO J. 1, 681–6.CrossRefGoogle ScholarPubMed
Giebelhaus, D.H., Heikkila, J.J., Schultz, G.A.. (1983). Changes in the quantity of histon and actin mRNA during the developrnt of preimplantation mouse embryos. Dev Bilo. 98, 148–54.CrossRefGoogle ScholarPubMed
Gilliland, G., Perrin, S., Bunn, H.F.. (1990). In: PCR Protocols: A Guide to Methods and Applications, ed. Innis, MA, Gelfand, DH. Sninsky, JH & White, TJ. White, pp.60–9. Academic Press, New York.Google Scholar
Grelfand, R.A., Marzluff, W.F., Gierelhaus, D.H., Schultz, G.A.. (1985). Qualitative and quantitative changes in histon gene expression during early mouse embryo development. Proc. Natl. Acad. Sci. USA 82, 5685–9.Google Scholar
Gubbay, J., Collignon, J., Koopman, P., Capel, B., Econmou, A., Munsterberg, A., Vivian, N., Goodfellow, P., LovellBadge, R.. (1990). A gene mapping to the sex determining refion of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–50.CrossRefGoogle Scholar
Hardy, K., Handyside, A.H.. Winston, RML. (1989). The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development 107, 597604.CrossRefGoogle ScholarPubMed
Koopman, P., Munsterberg, A., Capel, B., Vivian, N., LovellBadge, P.. (1990). Expression of sex-determining gene during mouse testis differentiation. Nature 348, 450–2.CrossRefGoogle ScholarPubMed
Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., LovellBadge, R.. (1991). Male development of chromosomally female mice transgenic for sey. Nature 351, 117–21.CrossRefGoogle Scholar
Krco, C.J.. Goldberg, E.H.. (1976). Detection of H-Y (male) antigen and 8-cell mouse embryos. Science 193, 1134–5.CrossRefGoogle Scholar
Kumar, G., Patel, D., Naz, R.K.. (1993). c-MYC mRNA is predent in human sperm cells. Cell Mol. Biol. Res. 39, 111–17.Google Scholar
Lau, YFC, Chan, K., Sparks, R.. (1989). Male-enhanced antigen gene is phylogenetically conserved and expressed at lats stages of spermatogesis. Proc. Natl. Acad. Sci. USA 86, 8463–6.CrossRefGoogle Scholar
Mittwoch, U.. (1993). Do genes determine Sex? Nature 221, 446–8.CrossRefGoogle Scholar
Mittwoch, U.. (1993). Blastocysts prepare for the race to be male. Hum. Reprod. 8, 1550–5.CrossRefGoogle ScholarPubMed
Mittwoch, U., Mahadevaiah, S.. (1980). Comparision of development of human fetal gonads and kidneys. Growth 44, 287300.Google Scholar
Page, C.C., Mosher, R., Simpson, E.M., Fisher, EMC, Mardon, G., Pollack, J., McGillivray, B., delaChapelle, A.. Brown, L.G.. (1987). The sex determining refion of the human Y chromosome encodes a finger prfion of the human Y chromosome encodes a finger prfion. Cell 51, 1091–104.CrossRefGoogle Scholar
Palmer, M.S., Besta, P., Sinclair, A.H., Pym, B., Goodfellow, P.N.. (1990). Comparision of human ZFY and ZFX transcripts. Proc. natl. Acad. Sci. USA 87, 1681–5.CrossRefGoogle Scholar
Paynton, B.V., Rempel, R., Bachvarova, R.. (1988). Changes in state of adenylation and time coustse of degradation of mRNAs during oocyte maturation and early embryonic development in the mouse. Dev. Biol. 281, 304–14.CrossRefGoogle Scholar
Pedersen, J.F.. (1980). Ultrasound evidence of sexual difference in fetal size in first trimester. BMJ 281, 1253.CrossRefGoogle ScholarPubMed
Pergament, E., Fiddler, M., Cho, N., Johnson, D., & Holmgren, W.J.. (1994). Sexual differentiation and preimplantation cell growth. Hum. Reprod. 9, 17301732.CrossRefGoogle ScholarPubMed
Roberts, R.G., Bobrow, M., Bentley, D.R.. (1992). Point mutation in the dystophin gene. Proc. Natl. Acad. Sci. USA 1992 89, 2331–5.CrossRefGoogle Scholar
Rutherford, A.J., SubakSharoe, R., Dawson, K., Margara, R.A., Franks, S., Winston, RML. (1988). Dramatic improvement in IVF success following treatment with LHRH agonist. BMJ, 1765–8.CrossRefGoogle Scholar
Scott, W.J., Holsen, J.F.. (1977). Weight differences in rat embryos prior to sexual differentiation. J. Embryol. Exp. Morphol. 40, 259–63.Google ScholarPubMed
Seller, M.J., PerkinsCole, K.J.. (1987). Sex differences in mouse embryonic development at neurulation. J. Reprod. Fert. 79, 159–61.CrossRefGoogle ScholarPubMed
Sinclair, A.H., Berta, P., Palmer, M.S., Hawkins, J.R., Griffiths, B.L., Smith, M.J., Foster, J.W., Frischauf, A.M., LovellBadge, R., Goodfellow, P.N.. (1990). A gene from the human sex determining region refion encodes a protein with homology to a conserved DNA binding motif.Nature 346, 240–4.CrossRefGoogle Scholar
Sprinks, M.T., Selleus, M.H., Dealltry, G.B.. Fernandez, N.. (1993). Preimplantation mouse embryos express Mhc class I genes before the first cleacage division. Immunogenetics 86, 549–58.Google Scholar
Tesarik, J. & Kopecny, V.. (1989). Nucleci acid synthesis and developmant of human male pronucleus. J. Reprod. Fert 86, 549–58.CrossRefGoogle Scholar
Tesarik, J., & Kopecny, V., Plachot, M., Mandelbaum, J.. (1988). Early morphological signs of embryonic genome expression in human preimplantation development as revealed by quantitative electron microscopy. Dev. Biol. 128, 1520.CrossRefGoogle ScholarPubMed
Tomanek, M., Kopecny, V., & Kanaka, J.. (1989). Genome reactivation in developing early pig embryos: an ultrastuctural and autoradiogrphic analysis. Anat. Embryol. 180, 309–16.CrossRefGoogle Scholar
Tsunoda, Y., Tokunaga, T., Sugie, T.. (1985). Alterd sex ratio of live young after transfer of fast-and slow-developing mouse embryos. Gamete Res. 12, 301–4.CrossRefGoogle Scholar
White, K.L., Anderson, G.B., BonDurant, R.H.. (1987a). Expression of a male-specific factor on various stages of Preimplantation boving embryos. Biol. Reprod 37, 867–73.CrossRefGoogle Scholar
White, K.L., Anderson, G.B., Pashen, R.L., BonDurant, RHJ. (1987b). Detection of histocompatibilityy (H-Y) antigen: identification of sex of preimplantation ovine enbryos. J. Reprod. Immunol. 10, 2732.CrossRefGoogle Scholar
White, K.L., Anderson, G.B., Berger, T.J., BonDurant, R.H.. Pashen, R.L.. (1987c). identification of a male-specific histocompatibility protein on preimaplantation porcine embryos. Gamete Res. 17, 107–13.CrossRefGoogle ScholarPubMed
Wood, T.G., White, K.L., Thompson, D.L. Jr, Garza, F. Jr. (1988). Evaluation of the expression of a male-specific antigen on cells of equine blastocysts. J. Reprod. Immunol. 41, 18.CrossRefGoogle Scholar
Xu, K.P., Yadav, B.R., King, W.A., Betterige, K.J.. (1992). Sex related differences in developmental rates of bovin embryos produced and cultured in vitro. Mol. Reprod. Dev. 31, 229–34.CrossRefGoogle ScholarPubMed
Zwingrnan, T., Erickson, R.P., Boyer, T.. Ao, A.. (1993). Transcription of the sex determining region genes sry and Zfy in the mouse preimplantation embryo. Proc. Natl. Acad. Sci. USA 90, 814–17.CrossRefGoogle Scholar