Skip to main content Accessibility help
×
Home

Synaptotagmin 1 regulates cortical granule exocytosis during mouse oocyte activation

  • Xiu-Lan Zhu (a1), Shi-Fen Li (a2), Xi-Qian Zhang (a1), Hong Xu (a1), Yan-Qun Luo (a1), Yan-Hong Yi (a1), Li-Juan Lv (a1), Chun-Hui Zhang (a3), Zhen-Bo Wang (a4), Ying-Chun Ouyang (a4), Yi Hou (a4), Heide Schatten (a5) and Feng-Hua Liu (a1)...

Summary

Synaptotagmin 1 (Syt1) is an abundant and important presynaptic vesicle protein that binds Ca2+ for the regulation of synaptic vesicle exocytosis. Our previous study reported its localization and function on spindle assembly in mouse oocyte meiotic maturation. The present study was designed to investigate the function of Syt1 during mouse oocyte activation and subsequent cortical granule exocytosis (CGE) using confocal microscopy, morpholinol-based knockdown and time-lapse live cell imaging. By employing live cell imaging, we first studied the dynamic process of CGE and calculated the time interval between [Ca2+]i rise and CGE after oocyte activation. We further showed that Syt1 was co-localized to cortical granules (CGs) at the oocyte cortex. After oocyte activation with SrCl2, the Syt1 distribution pattern was altered significantly, similar to the changes seen for the CGs. Knockdown of Syt1 inhibited [Ca2+]i oscillations, disrupted the F-actin distribution pattern and delayed the time of cortical reaction. In summary, as a synaptic vesicle protein and calcium sensor for exocytosis, Syt1 acts as an essential regulator in mouse oocyte activation events including the generation of Ca2+ signals and CGE.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Synaptotagmin 1 regulates cortical granule exocytosis during mouse oocyte activation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Synaptotagmin 1 regulates cortical granule exocytosis during mouse oocyte activation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Synaptotagmin 1 regulates cortical granule exocytosis during mouse oocyte activation
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Feng-Hua Liu, Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China. E-mail: liushine2016@163.com

References

Hide All
Ben-Yosef, D and Shalgi, R (1998) Early ionic events in activation of the mammalian egg. Rev Reprod 3, 96103.
Breuer, M, Kolano, A, Kwon, M, Li, CC, Tsai, TF, Pellman, D, Brunet, S and Verlhac, MH (2010) HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J Cell Biol 191, 1251–60.
Burkart, AD, Xiong, B, Baibakov, B, Jimenez-Movilla, M and Dean, J (2012) Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J Cell Biol 197, 3744.
Chun, JT, Puppo, A, Vasilev, F, Gragnaniello, G, Garante, E and Santella, L (2010) The biphasic increase of PIP2 in the fertilized eggs of starfish: new roles in actin polymerization and Ca2+ signaling. PLoS One 5, e14100.
de Paola, M, Bello, OD and Michaut, MA (2015) Cortical granule exocytosis is mediated by alpha-SNAP and N-ethylmaleimide sensitive factor in mouse oocytes. PLoS One 10, e135679.
Eliyahu, E, Tsaadon, A, Shtraizent, N and Shalgi, R (2005) The involvement of protein kinase C and actin filaments in cortical granule exocytosis in the rat. Reproduction 129, 161–70.
Fernandez-Chacon, R, Konigstorfer, A, Gerber, SH, Garcia, J, Matos, MF, Stevens, CF, Brose, N, Rizo, J, Rosenmund, C and Sudhof, TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–9.
Fujii, W and Funahashi, H (2008) In vitro development of non-enucleated rat oocytes following microinjection of a cumulus nucleus and chemical activation. Zygote 16, 117–25.
Glavan, G, Schliebs, R and Zivin, M (2009) Synaptotagmins in neurodegeneration. Anat Rec (Hoboken) 292, 1849–62.
Gui, L and Homer, H (2012) Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes. Development 139, 1941–6.
Inoue, Y, Kamikubo, Y, Ezure, H, Ito, J, Kato, Y, Moriyama, H and Otsuka, N (2015) Presynaptic protein Synaptotagmin1 regulates the neuronal polarity and axon differentiation in cultured hippocampal neurons. BMC Neurosci 16, 92.
Kanno, E and Fukuda, M (2008) Increased plasma membrane localization of O-glycosylation-deficient mutant of synaptotagmin I in PC12 cells. J Neurosci Res 86, 1036–43.
Kolano, A, Brunet, S, Silk, AD, Cleveland, DW and Verlhac, MH (2012) Error-prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension. Proc Natl Acad Sci USA 109, E1858–67.
Kyozuka, K, Chun, JT, Puppo, A, Gragnaniello, G, Garante, E and Santella, L (2008) Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes. Dev Biol 320, 426–35.
Leguia, M, Conner, S, Berg, L and Wessel, GM (2006) Synaptotagmin I is involved in the regulation of cortical granule exocytosis in the sea urchin. Mol Reprod Dev 73, 895905.
Li, L, Shin, OH, Rhee, JS, Arac, D, Rah, JC, Rizo, J, Sudhof, T and Rosenmund, C (2006) Phosphatidylinositol phosphates as co-activators of Ca2+ binding to C2 domains of synaptotagmin 1. J Biol Chem 281, 15845–52.
Meunier, FA and Gutierrez, LM (2016) Captivating new roles of F-actin cortex in exocytosis and bulk endocytosis in neurosecretory cells. Trends Neurosci 39, 605–13.
Osborne, SL, Wen, PJ, Boucheron, C, Nguyen, HN, Hayakawa, M, Kaizawa, H, Parker, PJ, Vitale, N and Meunier, FA (2008) PIKfyve negatively regulates exocytosis in neurosecretory cells. J Biol Chem 283, 2804–13.
Parrington, J, Jones, KT, Lai, A and Swann, K (1999) The soluble sperm factor that causes Ca2+ release from sea-urchin (Lytechinus pictus) egg homogenates also triggers Ca2+ oscillations after injection into mouse eggs. Biochem J 341(Pt 1), 1–4.
Perin, MS, Fried, VA, Mignery, GA, Jahn, R and Sudhof, TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260–3.
Puppo, A, Chun, JT, Gragnaniello, G, Garante, E and Santella, L (2008) Alteration of the cortical actin cytoskeleton deregulates Ca2+ signaling, monospermic fertilization and sperm entry. PLoS One 3, e3588.
Ramalho-Santos, J, Schatten, G and Moreno, RD (2002) Control of membrane fusion during spermiogenesis and the acrosome reaction. Biol Reprod 67, 1043–51.
Romarowski, A, Luque, GM, La Spina, FA, Krapf, D and Buffone, MG (2016) Role of actin cytoskeleton during mammalian sperm acrosomal exocytosis. Adv Anat Embryol Cell Biol 220, 129–44.
Schmidt, K, Clark, A, Mello, A, Durfey, C, Buck, A, Boyd, K and Whitaker, BD (2015) The effects of glucuronic acid and N-acetyl-d-glucosamine on in vitro fertilisation of porcine oocytes. Reprod Fertil Dev 2015, doi: 10.1071/RD14226PMID:25585197.
Shabtay, O and Breitbart, H (2016) CaMKII prevents spontaneous acrosomal exocytosis in sperm through induction of actin polymerization. Dev Biol 415, 6474.
Tomashov-Matar, R, Tchetchik, D, Eldar, A, Kaplan-Kraicer, R, Oron, Y and Shalgi, R (2005) Strontium-induced rat egg activation. Reproduction 130, 467–74.
Varodayan, FP, Pignataro, L and Harrison, NL (2011) Alcohol induces synaptotagmin 1 expression in neurons via activation of heat shock factor 1. Neuroscience 193, 6371.
Wen, PJ, Osborne, SL and Meunier, FA (2012) Phosphoinositides in neuroexocytosis and neuronal diseases. Curr Top Microbiol Immunol 362, 8798.
Whitaker, M and Larman, MG (2001) Calcium and mitosis. Semin Cell Dev Biol, 12, 5358.
Xu, J, Pang, ZP, Shin, OH and Sudhof, TC (2009) Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat Neurosci 12, 759–66.
Zanetti, MN, Bello, OD, Wang, J, Coleman, J, Cai, Y, Sindelar, CV, Rothman, JE and Krishnakumar, SS (2016) Ring-like oligomers of synaptotagmins and related C2 domain proteins. eLIFE 5, e17262.
Zhu, XL, Qi, ST, Liu, J, Chen, L, Zhang, C, Yang, SW, Ouyang, YC, Hou, Y, Schatten, H, Song, YL, Xing, FQ and Sun, QY (2012) Synaptotagmin1 is required for spindle stability and metaphase-to-anaphase transition in mouse oocytes. Cell Cycle 11, 818–26.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Zhu et al. Supplementary material
Zhu et al. Supplementary material

 Unknown (16.2 MB)
16.2 MB

Synaptotagmin 1 regulates cortical granule exocytosis during mouse oocyte activation

  • Xiu-Lan Zhu (a1), Shi-Fen Li (a2), Xi-Qian Zhang (a1), Hong Xu (a1), Yan-Qun Luo (a1), Yan-Hong Yi (a1), Li-Juan Lv (a1), Chun-Hui Zhang (a3), Zhen-Bo Wang (a4), Ying-Chun Ouyang (a4), Yi Hou (a4), Heide Schatten (a5) and Feng-Hua Liu (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed