Skip to main content Accessibility help

Short-term treatment with 6-DMAP and demecolcine improves developmental competence of electrically or Thi/DTT-activated porcine parthenogenetic embryos

  • Sol Ji Park (a1), Ok Jae Koo (a1), Dae Kee Kwon (a1), Ma Ninia Limas Gomez (a1), Jung Taek Kang (a1), Mohammad Atikuzzaman (a1), Su Jin Kim (a1), Goo Jang (a1) and Byeong Chun Lee (a2)...


Treatment with 6-dimethylaminopurine (6-DMAP) or demecolcine (DE) for several (at least 2) hours after artificial activation is known to improve in vitro development of porcine embryos. However, several reports have also shown that treatments with these chemicals induce apoptosis. The aim of this study was to find out whether short-term treatment with 6-DMAP and DE combined with electrical or thimerosal/dithiothreitol (Thi/DTT) activation had a beneficial effect on development of parthenogenetically activated porcine oocytes. We additionally treated embryos with 6-DMAP (2 mM) and/or DE (0.4 μg/ml) for a short time (40 min) after an electrical pulse (EP) or Thi/DTT. As a result, short-term treatment with 6-DMAP and DE successfully induced development of electrically or Thi/DTT-activated porcine parthenogenetic embryos with no significant difference in cleavage rate, blastocyst formation rate and total cell number compared with long-term treatment. To find optimal activation protocol, cleavage rate, blastocyst formation rate and total cell number were compared between EP and Thi/DTT treatments. Thi/DTT + 6-DMAP + DE showed significantly higher blastocyst formation rate (36.1 ± 3.5%) and total cell number (46.9 ± 1.0) than other groups (EP + 6-DMAP + DE, EP + Thi/DTT + 6-DMAP + DE: 23.3 ± 3.0%, 42.2 ± 1.1 and 17.2 ± 2.7%, 36.7 ± 1.5, respectively). In conclusion, this study demonstrates that short-term treatment with 6-DMAP and DE is as effective as the standard long-term treatment and Thi/DTT + 6-DMAP + DE exerts a synergistic effect.


Corresponding author

All correspondence to: Byeong Chun Lee. Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151–742, Korea. Tel: +822 880 1269. Fax: +822 873 1269. e-mail:


Hide All
Akagi, S., Adachi, N., Matsukawa, K., Kubo, M. & Takahashi, S. (2003). Developmental potential of bovine nuclear transfer embryos and postnatal survival rate of cloned calves produced by two different timings of fusion and activation. Mol. Reprod. Dev. 66, 264–72.
Alexander, B., Coppola, G., Di Berardino, D., Rho, G.J., St John, E., Betts, D.H. & King, W.A. (2006). The effect of 6-dimethylaminopurine (6-DMAP) and cycloheximide (CHX) on the development and chromosomal complement of sheep parthenogenetic and nuclear transfer embryos. Mol. Reprod. Dev. 73, 2030.
Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., Forsythe, T., Golueke, P., Jurgella, G., Koppang, R., Lesmeister, T., Mallon, K., Mell, G., Misica, P., Pace, M., Pfister-Genskow, M., Strelchenko, N., Voelker, G., Watt, S., Thompson, S. & Bishop, M. (2000). Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18, 1055–9.
Campbell, K.H., Fisher, P., Chen, W.C., Choi, I., Kelly, R.D., Lee, J.H. & Xhu, J. (2007). Somatic cell nuclear transfer, past, present and future perspectives. Theriogenology 68 (Suppl. 1), S214–31.
Collas, P., Fissore, R., Robl, J.M., Sullivan, E.J. & Barnes, F.L. (1993). Electrically induced calcium elevation, activation, and parthenogenetic development of bovine oocytes. Mol. Reprod. Dev. 34, 212–23.
De La Fuente, R. & King, W.A. (1998). Developmental consequences of karyokinesis without cytokinesis during the first mitotic cell cycle of bovine parthenotes. Biol. Reprod. 58, 952–62.
De Sousa, P.A., Dobrinsky, J.R., Zhu, J., Archibald, A.L., Ainslie, A., Bosma, W., Bowering, J., Bracken, J., Ferrier, P.M., Fletcher, J., Gasparrini, B., Harkness, L., Johnston, P., Ritchie, M., Ritchie, W.A., Travers, A., Albertini, D., Dinnyes, A., King, T.J. & Wilmut, I. (2002). Somatic cell nuclear transfer in the pig, control of pronuclear formation and integration with improved methods for activation and maintenance of pregnancy. Biol. Reprod. 66, 642–50.
Holker, M., Petersen, B., Hassel, P., Kues, W.A., Lemme, E., Lucas-Hahn, A. & Niemann, H. (2005). Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos. Cloning Stem Cells 7, 3544.
Ibanez, E., Albertini, D.F. & Overstrom, E.W. (2003). Demecolcine-induced oocyte enucleation for somatic cell cloning: coordination between cell-cycle egress, kinetics of cortical cytoskeletal interactions, and second polar body extrusion. Biol. Reprod. 68, 1249–58.
Im, G.S., Seo, J.S., Hwang, I.S., Kim, D.H., Kim, S.W., Yang, B.C., Yang, B.S., Lai, L. & Prather, R.S. (2006). Development and apoptosis of pre-implantation porcine nuclear transfer embryos activated with different combination of chemicals. Mol. Reprod. Dev. 73, 1094–101.
Inoue, K., Noda, S., Ogonuki, N., Miki, H., Inoue, S., Katayama, K., Mekada, K., Miyoshi, H. & Ogura, A. (2007). Differential developmental ability of embryos cloned from tissue-specific stem cells. Stem Cells 25, 1279–85.
Jiang, J.Y., Mizuno, S., Mizutani, E., Sasada, H. & Sato, E. (2002). Parthenogenetic activation and subsequent development of rat oocytes in vitro. Mol. Reprod. Dev. 61, 120–5.
Katoh, M., Araki, A., Ogura, T. & Valdivia, R.P. (2004). 6-Dimethylaminopurine (6-DMAP), which is used to produce most cloned animals, is mutagenic in Salmonella typhimurium TA1535. Mutat. Res. 560, 199201.
Koo, O. J., Park, H. J., Kwon, D.K., Kang, J.T., Jang, G. & Lee, B.C. (2009). Effect of recipient breed on delivery rate of cloned miniature pig. Zygote 17, 203–7.
Lai, L., Tao, T., Machaty, Z., Kuhholzer, B., Sun, Q.Y., Park, K.W., Day, B.N. & Prather, R.S. (2001). Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors. Biol. Reprod. 65, 1558–64.
Lee, S.H., Kim, D.Y., Nam, D.H., Hyun, S.H., Lee, G.S., Kim, H.S., Lee, C.K., Kang, S.K., Lee, B.C. & Hwang, W.S. (2004). Role of messenger RNA expression of platelet activating factor and its receptor in porcine in vitro-fertilized and cloned embryo development. Biol. Reprod. 71, 919–25.
Li, J., Villemoes, K., Zhang, Y., Du, Y., Kragh, P.M., Purup, S., Xue, Q., Pedersen, A.M., Jorgensen, A.L., Jakobsen, J.E., Bolund, L., Yang, H. & Vajta, G. (2009). Efficiency of two enucleation methods connected to handmade cloning to produce transgenic porcine embryos. Reprod. Domest. Anim. 44, 122–7.
Loi, P., Ledda, S., Fulka, J. Jr., Cappai, P. & Moor, R.M. (1998). Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biol. Reprod. 58, 1177–87.
Machaty, Z., Wang, W.H., Day, B.N. & Prather, R.S. (1997). Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal. Biol. Reprod. 57, 1123–7.
Meo, S.C., Yamazaki, W., Ferreira, C.R., Perecin, F., Saraiva, N.Z., Leal, C.L. & Garcia, J.M. (2007). Parthenogenetic activation of bovine oocytes using single and combined strontium, ionomycin and 6-dimethylaminopurine treatments. Zygote 15, 295306.
Miyazaki, S., Shirakawa, H., Nakada, K., Honda, Y., Yuzaki, M., Nakade, S. & Mikoshiba, K. (1992). Antibody to the inositol trisphosphate receptor blocks thimerosal-enhanced Ca2+-induced Ca2+ release and Ca2+ oscillations in hamster eggs. FEBS Lett. 309, 180–4.
Nanassy, L., Lee, K., Javor, A. & Machaty, Z. (2007). Changes in MPF and MAPK activities in porcine oocytes activated by different methods. Theriogenology. 68, 146–52.
Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H. & Perry, A.C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science. 289, 1188–90.
Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D.L., Colman, A. & Campbell, K.H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 8690.
Russell, D.F., Ibanez, E., Albertini, D.F. & Overstrom, E.W. (2005). Activated bovine cytoplasts prepared by demecolcine-induced enucleation support development of nuclear transfer embryos in vitro. Mol. Reprod. Dev. 72, 161–70.
Saraiva, N.Z., Perecin, F., Meo, S.C., Ferreira, C.R., Tetzner, T.A. & Garcia, J.M. (2009). Demecolcine effects on microtubule kinetics and on chemically assisted enucleation of bovine oocytes. Cloning Stem Cells 11, 141–52.
Solter, D. (2000). Mammalian cloning: advances and limitations. Nat. Rev. Genet. 1, 199207.
Sugimura, S., Kawahara, M., Wakai, T., Yamanaka, K., Sasada, H. & Sato, E. (2008). Effect of cytochalasins B and D on the developmental competence of somatic cell nuclear transfer embryos in miniature pigs. Zygote. 16, 153–9.
Swann, K. (1992). Different triggers for calcium oscillations in mouse eggs involve a ryanodine-sensitive calcium store. Biochem. J. 287 (Pt 1), 7984.
Swann, K. & Ozil, J.P. (1994). Dynamics of the calcium signal that triggers mammalian egg activation. Int. Rev. Cytol. 152, 183222.
Szollosi, M.S., Kubiak, J.Z., Debey, P., de Pennart, H., Szollosi, D. & Maro, B. (1993). Inhibition of protein kinases by 6-dimethylaminopurine accelerates the transition to interphase in activated mouse oocytes. J. Cell. Sci. 104 (Pt 3), 861–72.
Tian, X.C., Kubota, C., Enright, B. & Yang, X. (2003). Cloning animals by somatic cell nuclear transfer—biological factors. Reprod. Biol. Endocrinol. 1, 98.
Tian, J.H., Wu, Z.H., Liu, L., Cai, Y., Zeng, S.M., Zhu, S.E., Liu, G.S., Li, Y. & Wu, C.X. (2006). Effects of oocyte activation and sperm preparation on the development of porcine embryos derived from in vitro-matured oocytes and intracytoplasmic sperm injection. Theriogenology 66, 439–48.
Varga, E., Pataki, R., Lorincz, Z., Koltai, J. & Papp, A.B. (2008). Parthenogenetic development of in vitro matured porcine oocytes treated with chemical agents. Anim. Reprod. Sci. 105, 226–33.
Wakayama, T. & Yanagimachi, R. (2001). Mouse cloning with nucleus donor cells of different age and type. Mol. Reprod. Dev. 58, 376–83.
Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R. & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–74.
Wang, W.H., Abeydeera, L.R., Prather, R.S. & Day, B.N. (1998). Functional analysis of activation of porcine oocytes by spermatozoa, calcium ionophore, and electrical pulse. Mol. Reprod. Dev. 51, 346–53.
Yang, X.Y., Zhao, J.G., Li, H.W., Li, H., Liu, H.F., Huang, S.Z. & Zeng, Y.T. (2005). Improving in vitro development of cloned bovine embryos with hybrid (Holstein-Chinese Yellow) recipient oocytes recovered by ovum pick up. Theriogenology 64, 1263–72.


Short-term treatment with 6-DMAP and demecolcine improves developmental competence of electrically or Thi/DTT-activated porcine parthenogenetic embryos

  • Sol Ji Park (a1), Ok Jae Koo (a1), Dae Kee Kwon (a1), Ma Ninia Limas Gomez (a1), Jung Taek Kang (a1), Mohammad Atikuzzaman (a1), Su Jin Kim (a1), Goo Jang (a1) and Byeong Chun Lee (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed