Skip to main content Accessibility help

Selection of developmentally competent immature equine oocytes with brilliant cresyl blue stain prior to in vitro maturation with equine growth hormone

  • Gabriel R. Pereira (a1) (a2), Pedro L. Lorenzo (a3), Gustavo F. Carneiro (a4), Sylvie Bilodeau-Goeseels (a5), John P. Kastelic (a5), Alejandro Esteller-Vico (a2), Manel Lopez-Bejar (a6) and Irwin K.M. Liu (a2)...


Immature oocytes synthesize a variety of proteins that include the enzyme glucose-6-phosphate dehydrogenase (G6PDH). Brilliant cresyl blue (BCB) is a vital blue dye that assesses intracellular activity of G6PDH, an indirect measure of oocyte maturation. The objective was to evaluate the BCB test as a criterion to assess developmental competence of equine oocytes and to determine if equine growth hormone (eGH) enhanced in vitro maturation (IVM) of equine oocyte. Cumulus–oocytes complexes (COCs) were recovered by aspirating follicles <30 mm in diameter from abattoir-derived ovaries and were evaluated morphologically. Thereafter, COCs were exposed to BCB (26 μM) for 90 min at 39°C and selected based on the colour of their cytoplasm (BCB positive/BCB+ or BCB negative/BCB–). The COCs were allocated as follows: (a) IVM medium; (b) eGH group; (c) BCB–/IVM; (d) BCB+/IVM; (e) BCB–/eGH; and (f) BCB+/eGH. Then, COCs were cultured in vitro for 30 h, at 39°C in a 5%CO2 humidified air atmosphere. Cumulus-free oocytes were incubated in 10 μg/ml of bis-benzamide for 20 min at 39°C and nuclear maturation was evaluated with epifluorescence microscopy. Of the 39 COCs selected morphologically and subjected to BCB staining, 18/39 (46.2%) were classified as BCB+ and 21/39 (53.8%) as BCB– (P > 0.05). Maturation was not affected significantly by BCB classification, but the maturation rate was higher for oocytes that had been exposed to exogenous eGH versus controls (16/28, 57.1% versus 8/26, 30.8%, P < 0.05). In the present study, the BCB test was not useful for predicting competent equine oocytes prior to IVM. However, eGH enhanced equine oocyte maturation in vitro.


Corresponding author

All correspondence to: Gabriel Ribas Pereira. Federal University of Pelotas – UFPEL, School of Veterinary Medicine, Campus Capão do Leão, s/n° – Mailbox 354, Zip 96010–900, Pelotas, RS, Brasil. Tel: +55 55 99972240 (Mobile) or +55 53 3275 7188 (Laboratory). E-mail: or


Hide All
Alm, H., Torner, H., Lohrke, B., Viergutz, T., Ghoneim, I.M. & Kanitz, W. (2005). Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brilliant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity. Theriogenology 63, 2194–205.
Del Campo, M.R., Donoso, M.X., Parrish, J.J. & Ginther, O.J. (1990). In vitro fertilization and in vitro matured equine oocytes. Equine Vet. Sci. 10, 1822.
Dell'Aquila, M.E., Fusco, S., Lacandra, G.M. & Maritato, F. (1997). Intracytoplasmic sperm injection (ICSI) versus conventional IVF on abattoir-derived and in vitro matured oocytes. Theriogenology 47, 1139–56.
Ericsson, S.A., Boyce, M.L., Funahashi, H. & Day, B.N. (1993). Assessment of porcine oocytes using brilliant cresyl blue. Theriogenology 39, 214.
Goovaerts, I.G.F., Leroy, J.L.M.R., Jorssen, E.P.A. & Bols, P.E.J. (2010). Noninvasive bovine oocyte quality assessment: possibilities of a single oocyte culture. Theriogenology 74, 1509–20.
Goudet, G., Bézard, J., Duchamp, G., Gerard, N. & Palmer, E. (1997). Equine oocyte competence for nuclear and cytoplasmic in vitro maturation: effects of follicle size and hormonal environment. Biol. Reprod. 57, 232–45.
Hinrichs, K. & Schmidt, A.L. (2000). Meiotic competence in horse oocytes: interactions among chromatin configuration, follicle size, cumulus morphology, and season. Biol. Reprod. 62, 1402–8.
Ishizaki, C., Watanabe, H., Bhuiyan, M.M.U. & Fukui, Y. (2009). Developmental competence of porcine oocytes selected by brilliant cresyl blue and matured individually in a chemically defined culture medium. Theriogenology 72, 7280.
Izadyar, F., Colenbrander, B. & Bevers, M.M. (1996). In vitro maturation of bovine oocytes in the presence of growth hormone accelerates nuclear maturation and promotes subsequent embryonic development. Mol. Reprod. Dev. 45, 372–7.
Izadyar, F., Hage, W.J., Colenbrander, B. & Bevers, M.M. (1998). The promotory effect of growth hormone on the developmental competence of in vitro matured bovine oocytes is due to improved cytoplasmic maturation. Mol. Reprod. Dev. 49, 444–53.
Manjunatha, B.M., Gupta, P.S.P., Devaraj, M., Ravindra, J.P. & Nandi, S. (2007). Selection of developmentally competent buffalo oocytes by brilliant cresyl blue staining before IVM. Theriogenology 68, 1299–304.
Marchal, R., Caillaud, M., Martoriati, A., Gerard, N., Mermillod, P. & Goudet, G. (2003). Effect of growth hormone (GH) on in vitro nuclear and cytoplasmic oocyte maturation, cumulus expansion, hyaluronan synthases, and connexins 32 and 43 expression, and GH receptor messenger RNA expression in equine and porcine species. Biol. Reprod. 69, 1013–22.
Opiela, J., Katska-Ksiazkiewicz, L., Lipinski, D., Słomski, R., Bzowska, M. & Rynska, B. (2008). Interactions among activity of glucose-6-phosphate dehydrogenase in immature oocytes, expression of apoptosis-related genes Bcl-2 and Bax, and developmental competence following IVP in cattle. Theriogenology 69, 546–55.
Pereira, G.R., Lorenzo, P.L., Carneiro, G.F., Ball, B.A., Goncalves, P.B., Pegoraro, L.M., Bilodeau-Goeseels, S., Kastelic, J.P., Casey, P.J. & Liu, I.K.M. (2012). The effect of growth hormone (GH) and insulin-like growth factor-I (IGF-I) on in vitro maturation of equine oocytes. Zygote 20, 353–60.
Pereira, G.R., Lorenzo, P.L., Carneiro, G.F., Bilodeau-Goeseels, S., Kastelic, J.P., Pegoraro, L.M., Pimentel, C.A., Esteller-Vico, A., Illera, J.C., Silvan, G., Casey, P.J. & Liu, I.K.M. (2006). Effect of equine growth hormone on in vitro maturation and steroid-levels response of equine oocytes. Anim. Reprod. Sci. 94, 364–5.
Pujol, M., Lopez-Bejar, M. & Paramio, M.T. (2004). Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology 61, 735–44.
Roca, J., Martinez, E., Vazquez, J.M. & Lucas, X. (1998). Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test. Reprod. Fertil. Dev. 10, 479–85.
Rodrigues, B.A., Rodriguez, P., Silva, A.E.F., Cavalcante, L.F., Fletrin, C. & Rodrigues, J.L. (2009). Preliminary study in immature canine oocytes stained with brilliant cresyl blue and obtained from bitches with low and high progesterone profiles. Reprod. Dom. Anim. 44, 255–8.
Rodriguez-Gonzalez, E., Lopez-Bejar, M., Velilla, E. & Paramio, M.T. (2002). Selection of prepubertal goat oocytes using the brilliant cresyl blue test. Theriogenology 57, 1397–409.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed