Skip to main content Accessibility help
×
Home

Progressive motility – a potential predictive parameter for semen fertilization capacity in bovines

  • Y. Li (a1), D. Kalo (a2), Y. Zeron (a3) and Z. Roth (a4)

Summary

We examined the association between progressive motility of spermatozoa and in vitro fertilization (IVF) competence of bovine ejaculates. Fresh semen was evaluated using a computerized sperm quality analyzer for bulls using progressive motility as the primary parameter. Ejaculates with high progressive motility (HPM; >81%) were compared with those with low progressive motility (LPM; <62%). Semen concentration and sperm velocity were lower (P < 0.05) in HPM versus LPM ejaculates. Volume and motile sperm concentration did not differ between groups (P > 0.05). Examination of sperm morphology revealed a higher proportion of spermatozoa with abnormal morphology (P < 0.01) in LPM versus HPM ejaculates, the predominant abnormal feature being a bent tail (P < 0.05). Sperm viability, acrosome integrity and DNA fragmentation did not differ between HPM and LPM samples. Mitochondrial membrane potential was higher (P < 0.01) in HPM versus LPM semen. Zinc concentrations in the seminal plasma correlated with progressive motility (R2 = 0.463, P = 0.03). In addition, representative ejaculates from HPM and LPM groups were cryopreserved in straws and used for IVF. The proportions of embryos cleaved to 2- and 4-cell stages (88.1 ± 1.1 versus 80.5 ± 1.7, P = 0.001) and developed to blastocysts (33.5 ± 1.6 versus 23.5 ± 2.2, P = 0.026) were higher for HPM than LPM semen. The total cell number of embryos and blastocyst apoptotic index did not differ between groups. Although sperm progressive motility is associated with IVF competence, further examination is required to determine whether progressive motility can serve as a predictor of semen fertilization capacity in vivo.

Copyright

Corresponding author

All correspondence to: Z. Roth. Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel. Tel: +972 8 9489103. Fax: +972 8 9489552. e-mail: roth@agri.huji.ac.il

References

Hide All
Alavi, S.M., Gela, D., Rodina, M. & Linhart, O. (2011). Roles of osmolality, calcium–potassium antagonist and calcium in activation and flagellar beating pattern of sturgeon sperm. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 160, 166–74.
Alavi-Shoushtari, S.M., Rezai, S.A., Ansari, M.H. & Khaki, A. (2009). Effects of the seminal plasma zinc content and catalase activity on the semen quality of water buffalo (Bubalus bubalis) bulls. Pak. J. Biol. Sci. 12,134–9.
Alexander, J.H. (2008). Bull breeding soundness evaluation: a practitioner's perspective. Theriogenology 70, 469–72.
Al-Makhzoomi, A., Lundeheim, N., Håård, M. & Rodríguez-Martínez, H. (2008). Sperm morphology and fertility of progeny-tested AI dairy bulls in Sweden. Theriogenology 70, 682–91.
Al Naib, A., Hanrahan, J.P., Lonergan, P. & Fair, S. (2011). In vitro assessment of sperm from bulls of high and low field fertility. Theriogenology 76, 161–7.
Atig, F., Raffa, M., Habib, B.A., Kerkeni, A., Saad, A. & Ajina, M. (2012). Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 12, 6.
Bedwal, R.S. & Bahuguna, A. (1994). Zinc, copper and selenium in reproduction. Experientia 50, 626–40.
Broekhuijse, M.L., Šoštarić, W.J.E., Feitsma, H. & Gadella, B.M. (2012). Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 3, 779–89.
Calvin, H.I. (1979). Electrophoretic evidence for the identity of the major zinc-binding polypeptides in the rat sperm tail. Biol. Reprod. 21, 873–82.
Carafoli, E. (2002). Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. USA 99, 1115–22.
Cardullo, R.A. & Baltz, J.M. (1991). Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil. Cytoskeleton 19, 180–8.
Chang, H. & Suarez, S.S. (2011). Two distinct Ca2+ signaling pathways modulate sperm flagellar beating patterns in mice. Biol Reprod. 85, 296305.
Comhaire, F.H., Vermeulen, L. & Schoonjans, F. (1987). Reassessment of the accuracy of traditional sperm characteristics and adenosine triphosphate (ATP) in estimating the fertilizing potential of human semen in vivo . Int. J. Androl. 10, 653–62.
Darszon, A., Nishigaki, T., Beltran, C. & Treviño, C.L. (2011). Calcium channels in the development, maturation, and function of spermatozoa. Physiol. Rev. 91, 1305–55.
Dissanayake, D., Wijesinghe, P., Ratnasooriya, W. & Wimalasena, S. (2010). Relationship between seminal plasma zinc and semen quality in a subfertile population. J. Hum. Reprod. Sci. 3, 124–8.
Fair, W.R., Couch, J. & Wehner, N. (1976). Prostatic antibacterial factor. Identity and significance. Urology 7, 169–77.
Farrell, P.B., Presicce, G.A., Brockett, C.C. & Foote, R.H. (1998). Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 49, 871–9.
Gadea, J., Matás, C., & Lucas, X. (1998) Prediction of porcine semen fertility by homologous in vitro penetration (hIVP) assay. Anim. Reprod. Sci. 54, 95108.
Gallon, F., Marchetti, C., Jouy, N. & Marchetti, P. (2006). The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil. Steril. 86, 1526–30.
Gendelman, M., Aroyo, A., Yavin, S. & Roth, Z. (2010). Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos. Reproduction 140, 7382.
Gopalkrishnan, K., Hinduja, I.N. & Anand Kumar, T.C. (1991). Assessment of mitochondrial activity of human spermatozoa: motility/viability in fertile/infertile men. Mol. Androl. 3, 243–50.
Gravance, C.G., Garner, D.L., Miller, M.G. & Berger, T. (2001). Fluorescent probes and flow cytometry to assess rat sperm integrity and mitochondrial function. Reprod. Toxicol. 15, 510.
Hafez, B. & Hafez, E.S.E. (2000). Reproduction in Farm Animals. 7th ed. Lippincott Williams-Wilkins, Baltimore, MD.
Henkel, R., Bittner, J., Weber, R., Huther, F. & Miska, W. (1999). Relevance of zinc in human sperm flagella and its relation to motility. Fertil. Steril. 71, 1138–43.
Ho, E. & Ames, B.N. (2002). Low intracellular zinc induces oxidative DNA damage, disrupts P53, NFNF, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc. Natl. Acad. Sci. USA 99, 16770–5.
Jedrzejczak, P., Taszarek-Hauke, G., Hauke, J., Pawelczyk, L. & Duleba, A.J. (2008). Prediction of spontaneous conception based on semen parameters. Int. J. Androl. 31, 499507.
Kalo, D. & Roth, Z. (2011). Involvement of the sphingolipid ceramide in heat-shock-induced apoptosis of bovine oocytes. Reprod. Fertil. Dev. 23, 876–88.
Kasai, T., Ogawa, K., Mizuno, K., Nagai, S., Uchida, Y., Ohta, S., Fujie, M., Suzuki, K., Hirata, S. & Hoshi, K. (2002). Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian. J. Androl. 4, 97103.
Kastelic, J.P. & Thundathil, J.C. (2008). Breeding soundness evaluation and semen analysis for predicting bull fertility. Reprod. Domest. Anim. 43, 368–73.
Khan, M.S., Zaman, S., Sajjad, M., Shoaib, M. & Gilani, G. (2011). Assessment of the level of trace element zinc in seminal plasma of males and evaluation of its role in male infertility. Int. J. Appl. Basic. Med. Res. 1, 93–6.
Kondracki, S., Wysokińska, A., Iwanina, M., Banaszewska, D. & Sitarz, D. (2011). Effect of sperm concentration in an ejaculate on morphometric traits of spermatozoa in Duroc boars. Pol. J. Vet. Sci. 14, 3540.
Kondracki, S., Banaszewska, D., Wysokńjska, A. & Iwanina, M. (2012). The effect of sperm concentration in the ejaculate on morphological traits of bull spermatozoa. Folia Biol (Krakow) 60, 8591.
Kroetsch, T.G. & Stubbing, R.B. (1992). Sire and insemination dose effect on in vitro fertilization of bovine oocytes. Theriogenology 37, 240.
Kumar, N., Verma, R.P., Singh, L.P., Varshney, V.P. & Dass, R.S. (2006). Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attribute and serum testosterone level in crossbred cattle (Bos indicus x Bos taurus) bulls. Reprod. Nutr. Dev. 46, 663–75.
Kumar, D., Kumar, P., Singh, P., Yadav, S.P. & Yadav, P.S. (2012). 66 buffalo-bull semen-fertility evaluation in relation to motility and integrity of acrosome, plasma membrane, and sperm DNA. Reprod. Fertil. Dev. 25, 180.
Larsson, B. & Rodríguez-Martínez, H. (2000) Can we use in vitro fertilization tests to predict semen fertility? Anim. Reprod. Sci. 60–61, 327–36.
Lefièvre, L., Machado-Oliveira, G., Ford, C., Kirkman-Brown, J., Barratt, C. & Publicover, S. (2009). Communication between female tract and sperm: saying NO when you mean yes. Commun. Integr. Biol. 2, 82–5.
Lemma, A. (2011). Effect of cryopreservation on sperm quality and fertility. In Artificial Insemination in Farm Animals (ed. Manafi, M.), ISBN: 978-953-307-312-5. In Tech, DOI: 10.5772/16563.
Lenz, R.W., Kjelland, M.E., Vonderhaar, K., Swannack, T.M. & Moreno, J.F. (2011). A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer. J. Anim. Sci. 89, 383–8.
Lewis, S.E.M. (2007). Is sperm evaluation useful in predicting human fertility? Reproduction 134, 3140.
Lewis-Jones, D.I., Aird, I.A., Biljan, M.M. & Kingsland, C.R. (1996). Effects of sperm activity on zinc and fructose concentrations in seminal plasma. Hum. Reprod. 11, 2465–7.
López Rodríguez, A., Rijsselaere, T., Beek, J., Vyt, P., Van Soom, A. & Maes, D. (2013). Boar seminal plasma components and their relation with semen quality. Syst. Biol. Reprod. Med. 59, 512.
Love, C.C. (2011). Relationship between sperm motility, morphology and the fertility of stallions. Theriogenology 76, 547–57.
Love, C.C., Thompson, J.A., Brinsko, S.P., Rigby, S.L., Blanchard, T.L., Lowry, V.K. & Varner, D.D. (2003). Relationship between stallion sperm motility and viability as detected by two fluorescence staining techniques using flow cytometry. Theriogenology 60, 1127–38.
Mann, T. & Lutwak-Mann, C. (1981). Male Reproductive Function and Semen. Springer Verlag, Berlin, Heidelberg, New York.
Marin-Briggiler, C.I., Gonzalez-Echeverria, F., Buffone, M., Calamera, J.C., Tezon, J.G. & Vazquez-Levin, M.H. (2003). Calcium requirements for human sperm function in vitro. Fertil . Steril. 79, 1396–403.
Martinez-Pastor, F., Johannisson, A., Gil, J., Kaabi, M., Anel, L., Paz, P. & Rodriguez-Martinez, H. (2004). Use of chromatin stability assay, mitochondrial stain JC-1, and fluorometric assessment of plasma membrane to evaluate frozen-thawed ram semen. Anim. Reprod. Sci. 84, 121–33.
Massányi, P., Trandzik, J., Nad, P., Koreneková, B., Skalická, M., Toman, R., Lukac, N., Halo, M. & Strapak, P. (2004). Concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation to the occurrence of pathological spermatozoa. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 39, 3005–14.
Ohgoda, O., Niwa, K., Yuhara, M., Takahashi, S. & Kanoya, K. (1988). Variations in penetration rates in vitro of bovine follicular oocytes do not reflect conception rates after artificial insemination using frozen semen from different bulls Theriogenology 29, 1375–81.
Olson, G.E. & Winfrey, V.P. (1992). Structural organization of surface domains of sperm mitochondria. Mol. Reprod. Dev. 33, 8998.
Orgal, S., Zeron, Y., Elior, N., Biran, D., Friedman, E., Druker, S. & Roth, Z. (2012). Season-induced changes in bovine spermatozoa motility following a freeze-thaw procedure. J. Reprod. Dev. 58, 212–8.
Paoli, D., Gallo, M., Rizzo, F., Baldi, E., Francavilla, S., Lenzi, A., Lombardo, F. & Gandini, L. (2011). Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 95, 2315–9.
Parrish, J.J., Susko-Parrish, J.L., Leibfried-Rutledge, M.L., Critser, E.S., Eyestone, W.H. & First, N.L. (1986). Bovine in vitro fertilization with frozen–thawed semen. Theriogenology 25, 591600.
Prasad, A.S. (1991). Discovery of human zinc deficiency and studies in an experimental human model. Am. J. Clin. Nutr. 53, 403–12.
Prasad, A.S., Bao, B., Beck, F.W., Kucuk, O. & Sarkar, F.H. (2004). Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 37, 1182–90.
Rodriguez, A.L., Rijsselaere, T., Bijttebier, J., Vyt, P., Van Soom, A. & Maes, D. (2011). Effectiveness of the sperm quality analyzer (SQA-Vp) for porcine semen analysis. Theriogenology 75, 972–7.
Roudebush, W.E. & Diehl, J.R. (2001). Platelet-activating factor content in boar spermatozoa correlates with fertility. Theriogenology 55, 1633–8.
Ruiz-Pesini, E., Diez, C., Lapeña, A.C., Pérez-Martos, A., Montoya, J., Alvarez, E., Arenas, J. & López-Pérez, M.J. (1998). Correlation of sperm motility with mitochondrial enzymatic activities. Clin. Chem. 44, 1616–20.
Schneider, C.S., Ellington, J.E. & Wright, R.W. Jr (1999) Relationship between bull field fertility and in vitro embryo production using sperm preparation methods with and without somatic cell co-culture. Theriogenology 51, 1085–98.
Sørensen, M.B., Bergdahl, I.A., Hjøllund, N.H., Bonde, J.P., Stoltenberg, M. & Ernst, E. (1999). Zinc, magnesium and calcium in human seminal fluid: relations to other semen parameters and fertility. Mol. Hum. Reprod. 5, 331–7.
Spinaci, M., De Ambrogi, M., Volpe, S., Galeati, G., Tamanini, C. & Seren, E. (2005). Effect of staining and sorting on boar sperm membrane integrity, mitochondrial activity and in vitro blastocyst development. Theriogenology 64, 191201.
Suarez, S.S. & Dai, X. (1995). Intracellular calcium reaches different levels of elevation in hyperactivated and acrosome-reacted hamster sperm. Mol. Reprod. Dev. 42, 325–33.
Suarez, S.S., Varosi, S.M. & Dai, X. (1993). Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc. Natl. Acad. Sci. USA 90, 4660–4.
Tanghe, S., Van Soom, A., Sterckx, V., Maes, D. & de Kruif, A. (2002). Assessment of different sperm quality parameters to predict in vitro fertility of bulls. Reprod. Domest. Anim. 37, 127–32.
Tollner, T.L., Dong, Q. & VandeVoort, C.A. (2011). Frozen-thawed rhesus sperm retain normal morphology and highly progressive motility but exhibit sharply reduced efficiency in penetrating cervical mucus and hyaluronic acid gel. Cryobiology 62, 1521.
Verstegen, J., Igur-Ouada, M. & Onclin, K. (2002). Computer assisted analyzer in andrology research and veterinary practice. Theriogenology 57, 149–79.
Vincent, P., Underwood, S.L., Dolbec, C., Bouchard, N., Kroetsch, T. & Blondin, P. (2012). Bovine semen quality control in artificial insemination centers. Anim. Reprod. 3, 153–65.
Waberski, D., Dirksen, G., Weitze, K.F., Leiding, C. & Hahn, R. (1990). Field studies of the effect of sperm motility and morphology on the fertility of boars used for insemination. Tierarztl Prax. 18, 591–4.
Ward, F., Rizos, D., Boland, M.P. & Lonergan, P. (2003). Effect of reducing sperm concentration during IVF on the ability to distinguish between bulls of high and low field fertility: work in progress. Theriogenology 59, 1575–84.
Wiwanitkit, V. (2011). Not only seminal plasma zinc but also other trace elements affect semen quality. J. Hum. Reprod. Sci. 4, 58.
Wysokińska, A., Kondracki, S. & Banaszewska, D. (2009). Morphometrical characteristics of spermatozoa in Polish Landrace boars with regard to the number of spermatozoa in an ejaculate. Reprod. Biol. 9, 271–82.
Zhang, B.R., Larsson, B., Lundeheim, N. & Rodriguez-Martinez, H. (1997). Relationship between embryo development in vitro and 56-day nonreturn rates of cows inseminated with frozen–thawed semen from dairy bulls. Theriogenology 48, 221–31.
Zhang, B.R., Larsson, B., Lundeheim, N., & Rodriguez-Martinez, H. (1998) Sperm characteristics and zona pellucida binding in relation to field fertility of frozen–thawed semen from dairy AI bulls. Int. J. Androl. 21, 207–16.

Keywords

Progressive motility – a potential predictive parameter for semen fertilization capacity in bovines

  • Y. Li (a1), D. Kalo (a2), Y. Zeron (a3) and Z. Roth (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed