Skip to main content Accessibility help
×
Home

Morphogenesis-related gene-expression profile in porcine oocytes before and after in vitro maturation

  • Joanna Budna (a1), Adrian Chachuła (a2), Dominika Kaźmierczak (a3), Marta Rybska (a3), Sylwia Ciesiółka (a2), Artur Bryja (a4), Wiesława Kranc (a4), Sylwia Borys (a4), Agnieszka Żok (a5), Dorota Bukowska (a3), Paweł Antosik (a3), Małgorzata Bruska (a4), Klaus P. Brüssow (a3), Michał Nowicki (a2), Maciej Zabel (a2) (a6) and Bartosz Kempisty (a1) (a2) (a4)...

Summary

Mammalian oocyte maturation is achieved when oocytes reach metaphase II (MII) stage, and accumulate mRNA and proteins in the cytoplasm following fertilization. It has been shown that oocytes investigated before and after in vitro maturation (IVM) differ significantly in transcriptomic and proteomic profiles. Additionally, folliculogenesis and oogenesis is accompanied by morphogenetic changes, which significantly influence further zygote formation and embryo growth. This study aimed to determine new transcriptomic markers of porcine oocyte morphogenesis that are associated with cell maturation competence. An Affymetrix microarray assay was performed on an RNA template isolated from porcine oocytes before (n = 150) and after (n = 150) IVM. The brilliant cresyl blue (BCB) staining test was used for identification of cells with the highest developmental capacity. DAVID (Database for Annotation, Visualization, and Integrated Discovery) software was used for the extraction of the genes belonging to a cell morphogenesis Gene Ontology group. The control group consisted of freshly isolated oocytes. In total, 12,000 different transcripts were analysed, from which 379 genes were downregulated and 40 were upregulated in oocytes following IVM. We found five genes, SOX9, MAP1B, DAB2, FN1, and CXCL12, that were significantly upregulated in oocytes after IVM (in vitro group) compared with oocytes analysed before IVM (in vivo group). In conclusion, we found new transcriptomic markers of oocyte morphogenesis, which may be also recognized as significant mediators of cellular maturation capacity in pigs. Genes SOX9, MAP1B, DAB2, FN1, and CXCL12 may be involved in the regulation of the MII stage oocyte formation and several other processes that are crucial for porcine reproductive competence.

Copyright

Corresponding author

All correspondence to: Bartosz Kempisty. Department of Histology and Embryology, Department of Anatomy, Poznań University of Medical Sciences, 6 Święcickiego St., 60–781 Poznań, Poland. Tel:. +48 61 8546418. Fax:+48 61 8546440, E-mail: bkempisty@ump.edu.pl

Footnotes

Hide All
7

Both authors contributed equally to this work

Footnotes

References

Hide All
Agung, B., Otoi, T., Fuchimoto, D., Senbon, S., Onishi, A. & Nagai, T. (2013). In vitro fertilization and development of porcine oocytes matured in follicular fluid. J. Reprod. Dev. 59, 103–6.
Allen, E., Ding, J., Wang, W., Pramanik, S., Chou, J., Yau, V. & Yang, Y. (2005). Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature 438, 224–8.
Alvarenga, F.C.L. (2006). Structural aspects of equine oocytes matured in vivo and in vitro . Brazil. J. Vet. Res. Anim. Sci. 23, 513–24.
Ara, T., Nakamura, Y., Egawa, T., Sugiyama, T., Abe, K., Kishimoto, T., Matsui, Y. & Nagasawa, T. (2003). Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc. Natl. Acad. Sci. USA 100, 5319–23.
Assey, R.J., Hyttel, P., Greve, T., Purwantara, B. (1994). Oocyte morphology in dominant and subordinate follicles. Mol. Reprod. Dev. 37, 335–44.
Assou, S., Anahory, T., Pantesco, V., Le Carrour, T., Pellestor, F., Klein, B., Reyftmann, L., Dechaud, H., De Vos, J. & Hamamah, S. (2006). The human cumulus–oocyte complex gene-expression profile. Hum. Reprod. 21, 1705–19.
Bahamonde, P.A., Tetreault, G.R., McMaster, M.E., Servos, M.R., Martyniuk, C.J. & Munkittrick, K.R. (2014). Molecular signatures in rainbow darter (Etheostoma caeruleum). inhabiting an urbanized river reach receiving wastewater effluents. Aquat. Toxicol. 148, 211–20.
Casillas, F., Teteltitla-Silvestre, M., Ducolomb, Y., Lemus, A.E., Salazar, Z., Casas, E. & Betancourt, M. (2014). Co-culture with granulosa cells improve the in vitro maturation ability of porcine immature oocytes vitrified with cryolock. Cryobiology 69, 299304.
Chen, L., Ge, Z.J., Wang, Z.B., Sun, T., Ouyang, Y.C., Sun, Q.Y. & Sun, Y.P. (2014). TGN38 is required for the metaphase I/anaphase I transition and asymmetric cell division during mouse oocyte meiotic maturation. Cell Cycle 13, 2723–32.
Cran, D.G., Moor, R.M. & Hay, M.F. (1980). Fine structure of the sheep oocyte during antral follicle development. J. Reprod. Fertil. 59, 125–32.
Cran, D.G. (1985). Qualitative and quantitative structural changes during pig oocyte maturation. J. Reprod. Fertil. 74, 237–45.
Douville, G. & Sirard, M.A. (2014). Changes in granulosa cells gene expression associated with growth, plateau and atretic phases in medium bovine follicles. J. Ova. Res. 7, 50.
Dumond, H., Al-Asaad, I., Chesnel, A., Chardard, D., Boizet-Bonhoure, B., Flament, S. & Kuntz, S. (2011). Temporal and spatial SOX9 expression patterns in the course of gonad development of the caudate amphibian Pleurodeles waltl . J. Exp. Zool. B 316B, 199211.
Ericsson, S.A., Boice, M.L., Funahashi, H. & Day, B.N. (1993). Assessment of porcine oocytes using brilliant cresyl blue. Theriogenology 39, 214.
Goossens, K., Van Soom, A., Van Zeveren, A., Favoreel, H. & Peelman, L.J. (2009). Quantification of fibronectin 1 (FN1). splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. BMC Dev. Biol. 9, 1.
Holt, J.E., Jackson, A., Roman, S.D., Aitken, R.J., Koopman, P. & McLaughlin, E.A. (2006). CXCR4/SDF1 interaction inhibits the primordial to primary follicle transition in the neonatal mouse ovary. Dev. Biol. 293, 449–60.
Jackowska, M., Kempisty, B., Antosik, P., Bukowska, D., Budna, J., Lianeri, M., Rosinska, E., Woźna, M., Jagodzinski, P.P. & Jaśkowski, J.M. (2009). The morphology of porcine oocytes is associated with zona pellucida glycoprotein transcript contents. Reprod. Biol. 9, 7985.
Jamnongjit, M. & Hammes, S.R. (2005). Oocyte maturation: the coming of age of a germ cell. Semin. Reprod. Med. 23, 234–41.
Jeon, Y., Yoon, J.D., Cai, L., Hwang, S.U., Kim, E., Zheng, Z., Jeung, E., Lee, E. & Hyun, S.H. (2015). Zinc deficiency during in vitro maturation of porcine oocytes causes meiotic block and developmental failure. Mol. Med. Rep. 12, 5973–82.
Karami-Shabankareh, H. & Mirshamsi, S.M. (2012). Selection of developmentally competent sheep oocytes using the brilliant cresyl blue test and the relationship to follicle size and oocyte diameter. Small Rumin. Res, 105, 244–9.
Kempisty, B., Piotrowska, H., Walczak, R., Śniadek, P., Dziuban, J., Bukowska, D., Antosik, P., Jackowska, M., Woźna, M. & Jaśkowski, J.M. (2011). Factors with an influence on mammalian oocytes developmental potential in light of molecular and microfluidic research. Medycyna Weterynaryjna, 67, 435–9.
Kempisty, B., Ziolkowska, A., Ciesiolka, S., Piotrowska, H., Antosik, P., Bukowska, D., Nowicki, M., Brüssow, K.P. & Zabel, M. (2014). Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J. Biol. Regul. Homeostat. Agents 28, 625–35.
Kidder, G.M. & Vanderhyden, B.C. (2010). Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 88, 399413.
Kind, K.L., Banwell, K.M., Gebhardt, K.M., Macpherson, A., Gauld, A., Russell, D.L. & Thompson, J.G. (2013). Microarray analysis of mRNA from cumulus cells following in vivo or in vitro maturation of mouse cumulus–oocyte complexes. Reprod. Fertil. Dev. 25, 426–38.
Kossowska-Tomaszczuk, K., De Geyter, C., De Geyter, M., Martin, I., Holzgreve, W., Scherberich, A. & Zhang, H. (2009). The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells 27, 210–9.
Lien, L.L., Feener, C.A., Fischbach, N. & Kunkel, L.M. (1994). Cloning of human microtubule-associated protein 1B and the identification of a related gene on chromosome 15. Genomics 22, 273–80.
Mahdipour, M., Leitoguinho, A.R., Zacarias Silva, R.A., van Tol, H.T., Stout, T.A., Rodrigues, G. & Roelen, B.A. (2015). TACC3 is important for correct progression of meiosis in bovine oocytes. PLoS One 10, e0132591.
Mirshamsi, S.M., Karami-Shabankareh, H., Ahmadi-Hamedani, M., Soltani, L., Hajariana, H. & Abdolmohammadi, A.R. (2013). Combination of oocyte and zygote selection by brilliant cresyl blue (BCB). test enhanced prediction of developmental potential to the blastocyst in cattle. Anim. Reprod. Sci. 136, 245–51.
Mondadori, R.G., Santin, T.R., Fidelis, A.A.G., Name, K.P.O., da Silva, J.S., Rumpf, R. & Bao, S.N. (2010b). Ultrastructure of in vitro oocyte maturation in buffalo (Bubalus bubalis). Zygote 18, 309–14.
Muro, A.F., Chauhan, A.K., Gajovic, S., Iaconcig, A., Porro, F., Stanta, G. & Baralle, F.E. (2003). Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J. Cell Biol. 162, 149–60.
Nishigaki, A., Okada, H., Okamoto, R., Shimoi, K., Miyashiro, H., Yasuda, K. & Kanzaki, H. (2013). The concentration of human follicular fluid stromal cell-derived factor-1 is correlated with luteinization in follicles. Gynecol. Endocrinol. 29, 230–4.
Nishigaki, A., Okada, H., Okamoto, R., Sugiyama, S., Miyazaki, K., Yasuda, K. & Kanzaki, H. (2011). Concentrations of stromal cell-derived factor-1 and vascular endothelial growth factor in relation to the diameter of human follicles. Fertil. Steril., 95, 742–6.
Oreal, E., Mazaud, S., Picard, J.Y., Magre, S. & Carre-Eusebe, D. (2002). Different patterns of anti-Müllerian hormone expression, as related to DMRT1, SF-1, WT1, GATA-4, Wnt-4, and Lhx9 expression, in the chick differentiating gonads. Dev. Dynam. 225, 221–32.
Ouandaogo, Z.G., Frydman, N., Hesters, L., Assou, S., Haouzi, D., Dechaud, H., Frydman, R. & Hamamah, S. (2012). Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum. Reprod. 27, 2438–47.
Peters, D.D., Lepikhov, K., Rodenacker, K., Marschall, S., Boersma, A., Hutzler, P., Scherb, H., Walter, J. & de Angelis, M.H. (2009). Effect of IVF and laser zona dissection on DNA methylation pattern of mouse zygotes. Mamman. Genome 20, 664–73.
Pujol, M., López-Béjar, M. & Paramio, M.T. (2004). Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology 61, 735–44.
Revelli, A., Delle Piane, L., Casano, S., Molinari, E., Massobrio, M. & Rinaudo, P. (2009). Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 7, 40.
Robertson, S. & Lin, R. (2013). The oocyte-to-embryo transition. Adv. Exp. Med. Biol. 757, 351–72.
Roca, J., Martinez, E., Vazquez, J.M. & Lucas, X. (1998). Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test. Reprod. Fertil. Dev. 10, 479–85.
Rodríguez-González, E., López-Béjar, M., Velilla, E. & Paramio, M.T. (2002). Selection of prepubertal goat oocytes using the brilliant cresyl blue test. Theriogenology 57, 1397–409.
Schlessinger, D., Garcia-Ortiz, J.E., Forabosco, A., Uda, M., Crisponi, L. & Pelosi, E. (2010). Determination and stability of gonadal sex. J. Androl. 31, 1625.
Solc, P., Kitajima, T.S., Yoshida, S., Brzakova, A., Kaido, M., Baran, V., Mayer, A., Samalova, P., Motlik, J. & Ellenberg, J. (2015). Multiple requirements of PLK1 during mouse oocyte maturation. PLoS One, 10, e0116783.
Sreenivas, D., Kaladhar, D.S., Samy, A.P. & Kumar, R.S. (2012). Understanding mechanism of in vitro maturation, fertilization and culture of sheep embryoes through in silico analysis. Bioinformation 8, 1030–4.
Suzuki, H., Kanai-Azuma, M. & Kanai, Y. (2015). From sex determination to initial folliculogenesis in mammalian ovaries: morphogenetic waves along the anteroposterior and dorsoventral axes. Sex. Dev. 9, 190204.
Tesfaye, D., Ghanem, N., Carter, F., Fair, T., Sirard, M.A., Hoelker, M., Schellander, K. & Lonergan, P. (2009). Gene expression profile of cumulus cells derived from cumulus-oocyte complexes matured either in vivo or in vitro . Reprod. Fertil. Dev. 21, 451–61.
Trejter, M., Hochol, A., Tyczewska, M., Ziolkowska, A., Jopek, K., Szyszka, M., Malendowicz, L.K. & Rucinski, M. (2015). Sex-related gene expression profiles in the adrenal cortex in the mature rat: microarray analysis with emphasis on genes involved in steroidogenesis. Int. J. Mol. Med. 35, 702–14.
Uyar, A., Torrealday, S. & Seli, E. (2013). Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 99, 979–97.
Von Stetina, J.R. & Orr-Weaver, T.L. (2011). Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb. Perspect. Biol. 3, a005553.
Wang, Z., Tseng, C.P., Pong, R.C., Chen, H., McConnell, J.D., Navone, N. & Hsieh, J.T. (2002). The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2. J. Biol. Chem. 277, 12622–31.
Watson, A.J. (2007). Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J. Anim. Sci. 85, E1–3.
Westernstroer, B., Terwort, N., Ehmcke, J., Wistuba, J., Schlatt, S. & Neuhaus, N. (2014). Profiling of Cxcl12 receptors, Cxcr4 and Cxcr7 in murine testis development and a spermatogenic depletion model indicates a role for Cxcr7 in controlling Cxcl12 activity. PLoS One 9, e112598.
Yang, Q.E., Kim, D., Kaucher, A., Oatley, M.J. & Oatley, J.M. (2013). CXCL12–CXCR4 signaling is required for the maintenance of mouse spermatogonial stem cells. J. Cell Sci. 126, 1009–20.
Yokoo, M. & Sato, E. (2004). Cumulus–oocyte complex interactions during oocyte maturation. Int. Rev. Cytol. 235, 251–91.
Zhang, Y., Duan, X., Cao, R., Liu, H.L., Cui, X.S., Kim, N.H., Rui, R. & Sun, S.C. (2014). Small GTPase RhoA regulates cytoskeleton dynamics during porcine oocyte maturation and early embryo development. Cell Cycle 13, 3390–403.
Zuccarello, D., Ferlin, A., Garolla, A., Menegazzo, M., Perilli, L., Ambrosini, G. & Foresta, C. (2011). How the human spermatozoa sense the oocyte: a new role of SDF1-CXCR4 signalling. Int. J. Androl. 34, e554–65.

Keywords

Related content

Powered by UNSILO

Morphogenesis-related gene-expression profile in porcine oocytes before and after in vitro maturation

  • Joanna Budna (a1), Adrian Chachuła (a2), Dominika Kaźmierczak (a3), Marta Rybska (a3), Sylwia Ciesiółka (a2), Artur Bryja (a4), Wiesława Kranc (a4), Sylwia Borys (a4), Agnieszka Żok (a5), Dorota Bukowska (a3), Paweł Antosik (a3), Małgorzata Bruska (a4), Klaus P. Brüssow (a3), Michał Nowicki (a2), Maciej Zabel (a2) (a6) and Bartosz Kempisty (a1) (a2) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.