Skip to main content Accessibility help
×
Home

Modifications of chemically induced-enucleated nuclear transfer technique by reverse-order nuclear transfer in mouse

  • Yongsheng Wang (a1), Jun Liu (a1), Shuang Tang (a1), Zhixing An (a1), Zhilin Guo (a1), Xiangbin Ding (a1), Fengjun Liu (a1), Zelei Cao (a1), Tuo Zhang (a1) and Yong Zhang (a2) (a1)...

Summary

To improve the developmental potential of somatic cell cloned embryos derived from demecolcine (DC) induced-enucleated nuclear transfer (INT), we modified the INT procedures by transferring donor nuclei into recipient cytoplasts prior to the induced enucleation of the recipient cytoplasts, and we called this modified INT technique as reverse-order and induced-enucleated nuclear transfer (RINT). Standard nuclear transfer (SNT) and INT were performed as controls. The dynamic changes of maternal and transferred donor nuclei in the RINT oocytes were monitored to evaluate the feasibility of this new nuclear transfer (NT) technique by timed immunofluorescence. Timed immunofluorescence showed that RINT is feasible because none of the transferred donor nuclei were expelled with the second polar body (Pb) in the RINT oocytes, while 42.2% of the oocytes showed extrusion of all maternal chromosome and spindles with the second Pb at 60 min after activation and DC treatment. Although there was no difference in cleavage rate (86.6% vs. 82.1%), the rates of successful enucleation and blastocyst formation were significantly increased in RINT compared with INT (44.1% vs. 27.5% and 43.3% vs. 12.8%, respectively; p < 0.01). Compared with SNT, there was no difference in cleavage rate (86.6% vs. 78.4%), but the blastocyst developmental rate was significantly increased in the RINT group (43.3% vs. 25.3%; p < 0.01). Blastocysts derived from RINT had a higher total cell number than those from SNT (45.1 ± 3 vs. 37.6 ± 4; p < 0.05). Our results provide evidence that RINT is feasible and may provide a more efficient and simple method for NT than INT.

Copyright

Corresponding author

All correspondence to: Yong Zhang. Institute of Biotechnology, Northwest A&F University, Yangling, Shaanxi 712100, China. Tel: +86 029 87080092. e-mail: manyno@126.com

References

Hide All
Baguisi, A., Behboodi, E., Melican, D.T., Pollock, J.S., Destrempes, M.M., Cammuso, C., Williams, J.L., Nims, S.D., Porter, C.A., Midura, P., Palacios, M.J., Ayres, S.L., Denniston, R.S., Hayes, M.L., Ziomek, C.A., Meade, H.M., Godke, R.A., Gavin, W.G., Overstrom, E.W. & Echelard, Y. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–61.
Baguisi, A. & Overström, E.W. (2000). Induced enucleation in nuclear transfer procedures to produce cloned animals. Theriogenology 54, 209.
Casas, E., Betancourt, M., Bonilla, E., Duculomb, Y., Zayas, H. & Trejo, R. (1999). Changes in cyclin B localisation during pig oocyte in vitro maturation. Zygote 7, 21–6.
Eide, T., Coghlan, V., Orstavik, S., Holsve, C., Solberg, R., Skalhegg, B.S., Lamb, N.J., Langeberg, L., Fernandez, A., Scott, J.D., Jahnsen, T. & Tasken, K. (1998). Molecular cloning, chromosomal localization, and cell cycle-dependent subcellular distribution of the A-kinase anchoring protein, AKAP95. Exp. Cell Res. 238, 305–16.
Elsheikh, A.S., Takahashi, Y., Katagiri, S. & Kanagawa, H. (1998). Functional enucleation of mouse metaphase II oocytes with etoposide. Jpn. J. Vet. Res. 45, 217–20.
Fischer, D., Ibanez, E., Cibelli, J., Albertini, D.F. & Overstrom, E.W. (2002). Activated bovine cytoplasts produced by induced enucleation support development of bovine nuclear transfer embryos in vitro. Biol. Reprod. 66, 238.
Fulka, J., Jr. & Moor, R.M. (1993). Noninvasive chemical enucleation of mouse oocytes. Mol. Reprod. Dev. 34, 427–30.
Gao, S., Chung, Y.G., Parseghian, M.H., King, G.J., Adashi, E.Y. & Latham, K.E. (2004). Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice. Dev. Biol. 266, 6275.
Gasparrini, B., Gao, S., Ainslie, A., Fletcher, J., McGarry, M., Ritchie, W.A., Springbett, A.J., Overstrom, E.W., Wilmut, I. & De Sousa, P.A. (2003). Cloned mice derived from embryonic stem cell karyoplasts and activated cytoplasts prepared by induced enucleation. Biol. Reprod. 68, 1259–66.
Hou, J., Lei, T.H., Liu, L., Cui, X.H., An, X.R. & Chen, Y.F. (2006). Demecolcine-induced enucleation of sheep meiotically maturing oocytes. Reprod. Nutr. Dev. 46, 219–26.
Ibáñez, E., Albertini, D.F. & Overstrom, E.W. (2003). Demecolcine-induced oocyte enucleation for somatic cell cloning: coordination between cell-cycle egress, kinetics of cortical cytoskeletal interactions, and second polar body extrusion. Biol. Reprod. 68, 1249–58.
Ibáñez, E., Sanfins, A., Combelles, C., Albertini, D.F. & Overström, E.W. (2002). Induced enucleation of mouse and goat oocytes: kinetic and phenotypic characterizations. Theriogenology 57, 421.
Kang, Y.K., Koo, D.B., Park, J.S., Choi, Y.H., Lee, K.K. & Han, Y.M. (2001). Influence of oocyte nuclei on demethylation of donor genome in cloned bovine embryos. FEBS Lett. 499, 55–8.
Kim, J.M., Ogura, A., Nagata, M. & Aoki, F. (2002). Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol. Reprod. 67, 760–6.
Latham, K.E. (1999). Mechanisms and control of embryonic genome activation in mammalian embryos. Int. Rev. Cytol. 193, 71124.
Latham, K.E. (2005). Early and delayed aspects of nuclear reprogramming during cloning. Biol. Cell. 97, 119–32.
Li, Z., Sun, X., Chen, J., Liu, X., Wisely, S.M., Zhou, Q., Renard, J.P., Leno, G.H. & Engelhardt, J.F. (2006). Cloned ferrets produced by somatic cell nuclear transfer. Dev. Biol. 293, 439–48.
Ogura, A., Inoue, K., Takano, K., Wakayama, T. & Yanagimachi, R. (2000). Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol. Reprod. Dev. 57, 55–9.
Peura, T.T. (2003). Improved in vitro development rates of sheep somatic nuclear transfer embryos by using a reverse-order zona-free cloning method. Cloning Stem Cells 5, 1324.
Russell, D.F., Ibanez, E., Albertini, D.F. & Overstrom, E.W. (2005). Activated bovine cytoplasts prepared by demecolcine-induced enucleation support development of nuclear transfer embryos in vitro. Mol. Reprod. Dev. 72, 161–70.
Szollosi, D., Czolowska, R., Soltynska, M.S. & Tarkowski, A.K. (1986). Remodelling of thymocyte nuclei in activated mouse oocytes: an ultrastructural study. Eur. J. Cell Biol. 42, 140–51.
Szollosi, D., Czolowska, R., Szollosi, M.S. & Tarkowski, A.K. (1988). Remodeling of mouse thymocyte nuclei depends on the time of their transfer into activated, homologous oocytes. J. Cell Sci. 91 (Pt 4), 603–13.
Vajta, G., Lewis, I.M., Hyttel, P., Thouas, G.A. & Trounson, A.O. (2001). Somatic cell cloning without micromanipulators. Cloning 3, 8995.
Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R. & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–74.
Wakayama, T. & Yanagimachi, R. (2001). Mouse cloning with nucleus donor cells of different age and type. Mol. Reprod. Dev. 58, 376–83.
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–3.

Keywords

Modifications of chemically induced-enucleated nuclear transfer technique by reverse-order nuclear transfer in mouse

  • Yongsheng Wang (a1), Jun Liu (a1), Shuang Tang (a1), Zhixing An (a1), Zhilin Guo (a1), Xiangbin Ding (a1), Fengjun Liu (a1), Zelei Cao (a1), Tuo Zhang (a1) and Yong Zhang (a2) (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed