Skip to main content Accessibility help

Mitochondrial dynamics and their intracellular traffic in porcine oocytes

  • T. Yamochi (a1), S. Hashimoto (a2), A. Amo (a3), H. Goto (a2), M. Yamanaka (a2), M. Inoue (a2), Y. Nakaoka (a2) and Y. Morimoto (a2) (a3)...


Meiotic maturation of oocytes requires a variety of ATP-dependent reactions, such as germinal vesicle breakdown, spindle formation, and rearrangement of plasma membrane structure, which is required for fertilization. Mitochondria are accordingly expected be localized to subcellular sites of energy utilization. Although microtubule-dependent cellular traffic for mitochondria has been studied extensively in cultured neuronal (and some other somatic) cells, the molecular mechanism of their dynamics in mammalian oocytes at different stages of maturation remains obscure. The present work describes dynamic aspects of mitochondria in porcine oocytes at the germinal vesicle stage. After incubation of oocytes with MitoTracker Orange followed by centrifugation, mitochondria-enriched ooplasm was obtained using a glass needle and transferred into a recipient oocyte. The intracellular distribution of the fluorescent mitochondria was then observed over time using a laser scanning confocal microscopy equipped with an incubator. Kinetic analysis revealed that fluorescent mitochondria moved from central to subcortical areas of oocytes and were dispersed along plasma membranes. Such movement of mitochondria was inhibited by either cytochalasin B or cytochalasin D but not by colcemid, suggesting the involvement of microfilaments. This method of visualizing mitochondrial dynamics in live cells permits study of the pathophysiology of cytoskeleton-dependent intracellular traffic of mitochondria and associated energy metabolism during meiotic maturation of oocytes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mitochondrial dynamics and their intracellular traffic in porcine oocytes
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mitochondrial dynamics and their intracellular traffic in porcine oocytes
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mitochondrial dynamics and their intracellular traffic in porcine oocytes
      Available formats


Corresponding author

All correspondence to: T. Yamochi. IVF Namba Clinic, 1–17–28 Minamihorie, Nishik-ku, Osaka, Japan. Tel: +81 6 6534 8824. Fax: +81 6 6534 8876. E-mail:


Hide All
Albertini, D.F., Herman, B. & Sherline, P. (1984). In vivo and in vitro studies on the role of HMW-MAPs in taxol-induced microtubule bundling. Eur. J. Cell. Biol. 33, 134–43.
Barritt, J., Willadsen, S., Brenner, C. & Cohen, J. (2001). Cytoplasmic transfer in assisted reproduction. Hum. Reprod. Update 7, 428–35.
Boldogh, I.R. & Pon, L.A. (2006). Interactions of mitochondria with the actin cytoskeleton. Biochim. Biophys. Acta 1763. 450–62.
Brevini, T.A., Vassena, R., Francisci, C. & Gandolfi, F. (2005). Role of adenosine triphosphate, active mitochondria & microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biol. Reprod. 72, 1218–23.
Calarco, P.G. (2005). The role of microfilaments in early meiotic maturation of mouse oocytes. Microsc. Microanal. 11, 146–53.
Connors, S.A., Kanatsu-Shinohara, M., Schultz, R.M. & Kopf, G.S. (1998). Involvement of the cytoskeleton in the movement of cortical granules during oocyte maturation, and cortical granule anchoring in mouse eggs. Dev. Biol. 200, 103–15.
Cotterill, M., Harris, S.E., Collado, Fernandez, E., Lu, J., Huntriss, J.D., Campbell, B.K. & Picton, H.M. (2013). The activity and copy number of mitochondrial DNA in ovine oocytes throughout oogenesis in vivo and during oocyte maturation in vitro . Mol. Hum. Reprod. 19, 444–50.
Duan, X., Liu, J., Dai, X.X., Liu, H.L., Cui, X.S., Kim, N.H., Wang, Z.B., Wang, Q. & Sun, S.C. (2014). Rho-GTPase effector ROCK phosphorylates cofilin in actin-meditated cytokinesis during mouse oocyte meiosis. Biol. Reprod. 90, 37.
Ferreira, C.R., Burgstaller, J.P., Perecin, F., Garcia, J.M., Chiaratti, M.R., Méo, S.C., Müller, M., Smith, L.C., Meirelles, F.V. & Steinborn, R. (2010). Pronounced segregation of donor mitochondria introduced by bovine ooplasmic transfer to the female germ-line. Biol. Reprod. 82, 563–71.
Förtsch, J., Hummel, E., Krist, M. & Westermann, B. (2011). The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. J. Cell. Boil. 194, 473–88.
Furuyama, K., Fujita, H., Nagai, T., Yomogida, K., Munakata, H., Kondo, M., Kimura, A., Kuramoto, A., Hayashi, N. & Yamamoto, M. (1997). Pyridoxine refractory X-linked sideroblastic anemia caused by a point mutation in the erythroid 5-aminolevulinate synthase gene. Blood 90, 822–30.
Hirokawa, N., Niwa, S. & Tanaka, Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610–38.
Kim, S., Kim, H.Y., Lee, S., Kim, S.W., Sohn, S., Kim, K. & Cho, H. (2007). Hepatitis B Virus X protein induces perinuclear mitochondrial clustering in microtubule- and dynein-dependent manners. J. Virol. 81, 1714–26.
Lee, S., Kim, S., Sun, X., Lee, J.H. & Cho, H. (2007). Cell cycle-dependent mitochondrial biogenesis and dynamics in mammalian cells. Biochem. Biophys. Res. Commun. 357, 111–7.
Li, R. & Albertini, D.F. (2013). The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat. Rev. Mol. Cell. Biol. 14, 141–52.
Liu, S., Li, Y., Feng, H.L., Yan, J.H., Li, M., Ma, S.Y. & Chen, Z.J. (2010). Dynamic modulation of cytoskeleton during in vitro maturation in human oocytes. Am. J. Obstet. Gynecol. 203, e17.
Morris, R.L. & Hollenbeck, P.J. (1995). Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J. Cell. Biol. 131, 1315–26.
Niwa, S., Tanaka, Y. & Hirokawa, N. (2008). KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nat. Cell. Biol. 10, 1269–79.
Ou, X.H., Li, S., Wang, Z.B., Li, M., Quan, S., Xing, F., Guo, L., Chao, S.B., Chen, Z., Liang, X.W., Hou, Y., Schatten, H. & Sun, Q.Y. (2012). Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Hum. Reprod. 27. 2130–45.
Quintero, O.A., DiVito, M.M., Adikes, R.C., Kortan, M.B., Case, L.B., Lier, A.J., Panaretos, N.S., Slater, S.Q., Rengarajan, M., Feliu, M. & Cheney, R.E. (2009). Human Myo19 is a novel myosin that associates with mitochondria. Curr. Biol. 19, 2008–13.
Ricquier, D. & Bouillaud, F. (2000). Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J. Physiol. 529, 310.
Schuh, M. (2011). An actin-dependent mechanism for long-range vesicle transport. Nat. Cell. Biol. 12, 1431–6.
Schuh, M. & Ellenberg, J. (2008). A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 18, 1986–92.
Seabra, M.C. & Coudrier, E. (2004). Rab GTPases and myosin motors in organelle motility. Traffic 5, 393–9.
Stojkovic, M., Machado, S.A., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Goncalves, P.B. & Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64, 904–9.
Sun, Q.Y., Wu, G.M., Lai, L., Park, K.W., Cabot, R., Cheong, H.T., Day, B.N., Prather, R.S. & Schatten, H. (2001). Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro . Reproduction 122, 155–63.
Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A. & Hirokawa, N. (1998). Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–58.
Van Blerkom, J. (1991). Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc. Natl. Acad. Sci. USA 88, 5031–5.
Viet Lin, N., Kikuchi, K., Nakai, M., Tanihara, F., Noguchi, J., Kaneko, H., Dang-Nguyen, T. Q., Thi Men, N., Van Hanh, N., Somfai, T., Nguyen, B. X., Nagai, T., and Manabe, N. (2013). Fertilization ability of porcine oocytes reconstructed from ooplasmic fragments produced and characterized after serial centrifugations. J. Reprod. Dev. 59, 549–56.
Wilding, M., Dale, B., Marino, M., di Matteo, L., Alviggi, C., Pisaturo, M. L., Lombardi, L. & De Placido, G. (2001). Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16, 909–17.
Yi, K., Unruh, J.R., Deng, M., Slaughter, B.D., Rubinstein, D. & Li, R. (2011). Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat. Cell. Biol. 13, 1252–8.
Yoshioka, K., Suzuki, C. & Onishi, A. (2008). Defined system for in vitro production of porcine embryos using a single basic medium. J. Reprod. Dev. 54, 208–13.
Yu, Y., Dumollard, R., Rossbach, A., Lai, F.A. & Swann, K. (2010). Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. J. Cell. Physiol. 224, 672–80.
Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H.W., Terada, S., Nakata, T., Takei, Y., Saito, M., Tsuji, S., Hayashi, Y. & Hirokawa, N. (2001). Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587–97.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Yamochi supplementary material
Figure S1

 Word (503 KB)
503 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed