Skip to main content Accessibility help
×
Home

Mitochondria during sea urchin oogenesis

  • Maria Agnello (a1), Maria Carmela Roccheri (a2), Giovanni Morici (a2) and Anna Maria Rinaldi (a2)

Summary

Sea urchin represents an ideal model for studies on fertilization and early development, but the achievement of egg competence and mitochondrial behaviour during oogenesis remain to be enlightened. Oocytes of echinoid, such as sea urchin, unlike other echinoderms and other systems, complete meiotic maturation before fertilization. Mitochondria, the powerhouse of eukaryotic cells, contain a multi-copy of the maternally inherited genome, and are involved directly at several levels in the reproductive processes, as their functional status influences the quality of oocytes and contributes to fertilization and embryogenesis. In the present paper, we report our latest data on mitochondrial distribution, content and activity during Paracentrotus lividus oogenesis. The analyses were carried out using confocal microscopy, in vivo incubating oocytes at different maturation stages with specific probes for mitochondria and mtDNA, and by immunodetection of Hsp56, a well known mitochondrial marker. Results show a parallel rise of mitochondrial mass and activity, and, especially in the larger oocytes, close to germinal vesicle (GV) breakdown, a considerable increase in organelle activity around the GV, undoubtedly for an energetic aim. In the mature eggs, mitochondrial activity decreases, in agreement with their basal metabolism. Further and significant information was achieved by studying the mitochondrial chaperonin Hsp56 and mtDNA. Results show a high increase of both Hsp56 and mtDNA. Taken together these results demonstrate that during oogenesis a parallel rise of different mitochondrial parameters, such as mass, activity, Hsp56 and mtDNA occurs, highlighting important tools in the establishment of developmental competence.

Copyright

Corresponding author

All correspondence to: Maria Agnello. Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 16, Palermo 90128, Italy. Tel: +39 091 238 97 419. Fax: +39 091 65 77 210. E-mail: maria.agnello@unipa.it

References

Hide All
Agnello, M., Chiarelli, R., Martino, C., Bosco, L. & Roccheri, A.M. (2016). Autophagy is required for sea urchin oogenesis and early development. Zygote 24, 918–26.
Agnello, M., Morici, G. & Rinaldi, A.M. (2008). A method for measuring mitochondrial mass and activity. Cytotechnology 56,145–9.
Babayev, E. & Seli, E. (2015). Oocyte mitochondrial function and reproduction. Curr. Opin. Obstet. Gynecol. 27, 175–81.
Barritt, J., Brenner, C., Cohen, J. & Matt, D. (1999). Mitochondrial rearrangements in human oocytes and embryos. Mol. Hum. Reprod. 5, 927–33.
Barritt, J.A., Kokot, M., Cohen, J., Steuerwald, N. & Brenner, C.A. (2002). Quantification of human ooplasmic mitochondria. Reprod. Biomed. 4, 243–7.
Berg, L. & Wessel, G.M. (1997). Cortical granules of the sea urchin translocate early in oocyte maturation. Development 124, 1845–50.
Billett, F.S. & Adam, E. (1976). The structure of the mitochondrial cloud of Xenopus laevis oocytes. J. Embryol. Exp. Morphol. 36, 697710.
Bresch, H. (1978). Mitochondrial profile densities and areas in different developmental stages of the sea urchin Sphaerechinus granularis . Exp. Cell Res. 111, 205–9.
Bukovsky, A., Caudle, M.R., Svetlikova, M. & Upadhyaya, N.B. (2004). Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod. Biol. Endocrinol. 2, 20.
Buttino, I., Ianora, A., Carotenuto, Y., Zupo, V. & Miralto, A. (2003). Use of the confocal laser scanning microscope in studies on the developmental biology of marine crustaceans. Micros. Res. Tech. 60, 458–64.
Cao, L., Shitara, H., Horii, T. Nagao, Y., Imai, H., Abe, K., Hara, T., Hayashi, J. & Yonekawa, H. (2007). The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39, 386–90.
Chang, P., Torres, J., Lewis, R. A. Mowry, K.L., Houliston, E. & King, M.L. (2004). Location of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol. Biol. Cell. 15, 4669–81.
Costache, V., McDougall, A. & Dumollard, R. (2014). Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochem. Biophys. Res. Commun. 450, 1175–81.
Coticchio, G., Dal Canto, M., Mignini Renzini, M., Guglielmo, M.C., Brambillasca, F., Turchi, D., Novara, P.V. & Fadini, R. (2015) Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum. Reprod. Update 21, 427–54.
Cuezva, J.M., Ostronoff, L.K., Ricart, J., López de Heredia, M., Di Liegro, C.M. & Izquierdo, J.M. (1997). Mitochondrial biogenesis in the liver during development and oncogenesis. J. Bioenerg. Biomembr. 29, 365−77.
Dalton, C.M. & Carroll, J. (2013). Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J. Cell Sci. 126, 2955–64.
de Paula, W.B., Agip, A.N., Missirlis, F., Ashworth, R., Vizcay-Barrena, G., Lucas, C.H. & Allen, J.F. (2013). Female and male gamete mitochondria are distinct and complementary in transcription, structure, and genome function. Genome Biol. Evol. 5, 1969–77.
de Smedt, V., Szollosi, D. & Kloc, M. (2000). The balbiani body: asymmetry in the mammalian oocyte. Genesis 26, 208–12.
Di Liegro, C.M. & Rinaldi, A.M. (2007). Hsp56 mRNA in Paracentrotus lividus embryos binds to a mitochondrial protein. Cell Biol. Int. 31, 1331–5.
Di Liegro, C.M., Agnello, M., Casano, C., Roccheri, M.C., Gianguzza, F. & Rinaldi, A.M. (2008). Hsp56 protein and mRNA distribution in normal and stressed P. lividus embryos. Caryologia 61, 82–7.
Dumollard, R., Duchen, M. & Duchen, J. (2007). The role of mitochondrial function in the oocyte and embryo. Curr. Top. Dev. Biol. 77, 2149.
Enríquez, J.A., Fernández-Silva, P., Garrido-Pérez, N., López-Pérez, M.J., Pérez-Martos, A. & Montoya, J. (1999). Direct regulation of mitochondrial RNA synthesis by thyroid hormone. Mol. Cell Biol. 19, 657–70.
Fujiwara, A. & Yasumasu, I. (1997). Does the respiratory rate in sea urchin embryos increase during early development without proliferation of mitochondria? Dev. Growth Differ. 39, 179–89.
Gianguzza, F., Ragusa, M.A., Roccheri, M.C., Di Liegro, I. & Rinaldi, A.M. (2000). Isolation and characterization of a Paracentrotus lividus cDNA encoding a stress-inducible chaperonin. Cell Stress Chaperones 5, 87–9.
Giudice, G. (1985). The Sea Urchin Embryo. Springer-Verlag, Berlin, pp. 73–4.
Giudice, G., Sconzo, G., Bono, A. & Albanese, I. (1972). Studies on sea urchin oocytes. I. Purification and cell fractionation. Exp. Cell Res. 72, 90–4.
Goffart, S. & Wiesner, R.J. (2003). Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp. Physiol. 88, 3340.
Hertzler, P.L. & Clark, W.H. Jr (1992). Cleavage and gastrulation in the shrimp Sicyonia ingentis: invagination is accompanied by oriented cell division. Development 116, 127–40.
Holy, J.M. (1999). Imaging sea urchin fertilization. In Methods in Molecular Biology, Confocal Microscopy Methods and Protocols (ed. Paddock, S.W.). Humana Press, Totowa: New Jersey, pp. 153–66.
Hood, D.A. (2001). Invited Review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J. Appl. Physiol. 90, 1137–57.
Kiyomoto, M., Zito, F., Costa, C., Poma, V., Sciarrino, S. & Matranga, V. (2007). Skeletogenesis by transfected secondary mesenchyme cells is dependent on extracellular matrix-ectoderm interactions in Paracentrotus lividus sea urchin embryos. Dev. Growth Differ. 49, 731–41.
Klingenspor, M., Ivemeyer, M., Wiesinger, H., Haas, K., Heldmaier, G. & Wiesner, R.J. (1996). Biogenesis of thermogenic mitochondria in brown adipose tissue of Djungarian hamsters during cold adaptation. Biochem. J. 316, 607–13.
Kloc, M. & Etkin, L.D. (1998). Apparent continuity between the messenger transport organizer and late RNA localization pathways during oogenesis in Xenopus . Mech. Dev. 73, 95106.
Kloc, M., Bilinski, S., Dougherty, M.T., Brey, E.M. & Etkin, L.D. (2004). Formation, architecture and polarity of female germline cyst in Xenopus . Dev. Biol. 266, 4361.
Kloc, M., Jaglarz, M., Dougherty, M., Stewart, M.D., Nel-Themaat, L. & Bilinski, S. (2008). Mouse early oocytes are transiently polar: three-dimensional and ultrastructural analysis. Exp. Cell Res. 314, 3245–54.
Knaut, H., Pelegri, F., Bohmann, K. & Nüsslein-Volhard, C. (2000). Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J. Cell Biol. 149, 875–88.
Kosaka, K., Kawakami, K., Sakamoto, H. & Inoue, K. (2007). Spatiotemporal localization of germ plasm RNAs during zebrafish oogenesis. Mech. Dev. 124, 279–89.
Matsumoto, L., Kasamatsu, H., Pikó, L. & Vinograd, J. (1974) Mitochondrial DNA replication in sea urchin oocytes. J. Cell Biol. 63, 146–59.
May-Panloup, P., Chretien, M.F., Malthiery, Y. & Reynier, P. (2007). Mitochondrial DNA in the oocyte and the developing embryo. Curr. Top. Dev. Biol. 77, 5183.
Morici, G., Agnello, M., Spagnolo, F., Roccheri, M.C., Di Liegro, C.M. & Rinaldi, A.M. (2007). Confocal microscopy study of the distribution, content and activity of mitochondria during Paracentrotus lividus development. J. Microsc. 228, 165–73.
Nagata, T. (2006). Electron microscopic radioautographic study on protein synthesis in hepatocyte mitochondria of aging mice. Sci. World J. 15, 1583–98.
Nishi, Y., Takeshita, T., Stato, K. & Araki, T. (2003). Change of the mitochondrial distribution in mouse ooplasm during in vitro maturation. J. Nippon Med. Sch. 70, 408–15.
Pawley, J.B. (ed.) (1995). Handbook of Biological Confocal Microscopy, 2nd edn. Plenum Press: New York.
Pedersen, H.S., Løvendahl, P., Larsen, K., Madsen, L.B. & Callesen, H. (2016). Porcine oocyte mtDNA copy number is high or low depending on the donor. Zygote 24, 617–23.
Pepling, M.E., Wilhelm, J.E., O'Hara, A.L., Gephardt, G.W. & Spradling, A.C. (2007). Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc. Natl. Acad. Sci. USA 104, 187–92.
Perez, G.I., Trbovich, A.M., Gosgen, R.G. & Tilly, J.L. (2000). Mitochondria and the death of oocytes. Nature 403, 500–1.
Pollak, J.K. & Sutton, R. (1980). The transport and accumulation of adenine nucleotides during mitochondrial biogenesis. Biochem. J. 192, 7583.
Poulton, J. & Marchington, D.R. (2002). Segregation of mitochondrial DNA (mtDNA) in human oocytes and in animal models of mtDNA disease: clinical implications. Reproduction 123, 751−5.
Rinaldi, A.M., De Leo, G., Arzone, A., Salcher, I., Storace, A. & Mutolo, V. (1979a). Biochemical and electron microscopic evidence that cell nucleus negatively controls mitochondrial genomic activity in early sea urchin development. Proc. Natl. Acad. Sci. USA 76, 1916–20.
Rinaldi, A.M., Salcher-Cillari, I. & Mutolo, V. (1979b). Mitochondrial division in not nucleated sea urchin eggs. Cell. Biol. Int. Rep. 3, 179–82.
Roccheri, M.C., Bosco, L., Ristuccia, M.E., Cascino, D., Giudice, G., Oliva, A.O. & Rinaldi, A.M. (1997). Sea urchin mitochondrial matrix contains a 56-kDa chaperonine-like protein. Biochem. Biophys. Res. Commun. 234, 646–50.
Roccheri, M.C., Patti, M., Agnello, M., Gianguzza, F., Carra, E. & Rinaldi, A.M. (2001). Localization of mitochondrial Hsp56 chaperonin during sea urchin development. Biochem. Biophys. Res. Commun. 287, 1093–8.
Schnapp, B.J., Arn, E.A., Deshler, J.O. & Highet, M.I. (1997). RNA localization in Xenopus oocytes. Semin. Cell. Dev. Biol. 8, 529–40.
Sieber, M.H., Thomsen, M.B. & Spradling, A.C. (2016). Electron transport chain remodeling by gsk3 during oogenesis connects nutrient state to reproduction. Cell 164, 420–32.
Summers, R.G., Stricker, S.A. & Cameron, R.A. (1993). Applications of confocal microscopy to studies of sea urchin embryogenesis. In Methods in Cell Biology: Cell Biological Applications of Confocal Microscopy (ed. Matsumoto, B.). Academic Press, San Diego: California, USA pp. 266–86.
Sun, Q.Y., Wu, G. M., Lai, L. X. Park, K.W., Cabot, R., Cheong, H.T., Day, B.N., Prather, R.S. & Schatten, H. (2001). Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro . Reproduction 122, 155–63.
Torner, H., Brüssow, K.P., Alm, H., Ratky, J., Pöhland, R., Tuchscherer, A. & Kanitz, W. (2004). Mitochondrial aggregation patterns and activity in porcine oocytes and apoptosis in surrounding cumulus cells depends on the stage of pre-ovulatory maturation. Theriogenology 61, 1675–89.
Van Blerkom, J. (2011). Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11, 797813.
Van Blerkom, J., Davis, P., Mathwig, V. & Alexander, S. (2002). Domains of high-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum. Reprod. 17, 393406.
Wessel, G.M., Berg, L. & Conner, S.D. (2004a). Cortical granule translocation is linked to meiotic maturation in the sea urchin oocyte. Development 129, 4315–25.
Wessel, G.M., Voronina, E. & Brooks, J.M. (2004b). Obtaining and handling echinoderm oocytes. Methods Cell Biol. 74, 87114.
Wilding, M., Carotenuto, R., Infante, V. Dale, B., Marino, M., Di Matteo, L. & Campanella, C. (2001a). Confocal microscopy analysis of the activity of mitochondria contained within the ‘mitochondrial cloud’ during oogenesis in Xenopus laevis . Zygote 9, 347–52.
Wilding, M., Dale, B., Marino, M., di Matteo, L., Alviggi, C., Pisaturo, M.L., Lombardi, L. & De Placido, G. (2001b). Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16, 909–17.
Yaffe, M.P. (1999). Dynamic mitochondria. Nat. Cell Biol. 1, E149–50.
Yakovlev, K.V. (2016). Localization of germ plasm-related structures during sea urchin oogenesis. Dev. Dynam. 245, 5666.
Yi, K., Rubinstein, B., Unruh, J.R., Guo, F., Slaughter, B.D. & Li, R. (2013). Sequential actin-based pushing forces drive meiosis I chromosome migration and symmetry breaking in oocytes. J. Cell Biol. 200, 567–76.
Zhang, W.H., Zhu, S.N., Lu, S.L., Huang, Y.L. & Zhao, P. (2000). Three-dimensional image of hepatocellular carcinoma under confocal laser scanning microscope. World J. Gastroenterol. 6, 344–7.
Zhang, Y.Z., Ouyang, Y.C., Hou, Y., Schatten, H., Chen, D.Y. & Sun, Q.Y. (2008). Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis. Dev. Growth Differ. 50, 189201.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed